Headline generation for Dutch newspaper articles
through transformation-based learning

Daniél J.A. de Kok

August 2008

Master’s Thesis
Information Science
Faculty of Arts
University of Groningen

Supervisor: dr. G.J.M. van Noord
Reader: dr. G. Bouma

Contents

1 Introduction

1.1 Text summarization
1.2 Headline generation
1.3 Approach
1.4 System overview oo
1.5 Thesisoverview o

2 Prior research

2.1 Noisy-channel model
2.1.1 Introduction
212 Themodel
2.1.3 Training oo
2.1.4 Evaluation
2.1.5 Conclusions
2.1.6 Model extensions
2.2 Hedge trimmer L
2.2.1 Introduction,
2.2.2 Heuristics
2.2.3 Evaluation
2.2.4 Conclusions

3 Transformation-based learning
3.1 Introduction. o
3.2 Transformation-based learning in part-of-speech tagging . . .
3.2.1 POStagging
3.2.2 Improvement through transformation-based learning .
3.3 Application to trimming

4 Generation of a headline corpus
4.1 Introduction.
4.2 Procedure

11
11
11
12
13
13
15
15
15
15
16
18
19

21
21
22
22
23
23

CONTENTS

TBL for trimming 29
5.1 Introduction. 29
5.2 Condition generators 30
5.3 Actions 32
5.3.1 Deletion actions 32
5.3.2 Parent replacement 33
5.3.3 Make root actions 33
5.3.4 Sibling swapping L. 35
5.3.5 Rulescope 36
54 Templates 36
5.4.1 Hedge trimmer-like templates 37
5.4.2 Extra rule templates oL 40
5.0 Learning Lo 42
5.6 Trimming L L Lo 44
Methodology for evaluation 45
6.1 ROUGE 45
6.1.1 Introduction 45
6.1.2 ROUGE-N 46
6.1.3 ROUGE-L. 46
6.1.4 ROUGE-W 47
6.1.5 ROUGE-S. 48
6.1.6 ROUGE-SU 49
6.2 Using ROUGE as a scoring function for TBL 49
6.3 Using ROUGE for evaluation 51
Implementation details 53
7.1 Speeding up learning L. 53
7.2 Handling of Alpino parse trees 53
Results 57
8.1 Machine evaluation o7
8.2 Human evaluation 59
8.3 Examples of trimming problems 60
8.3.1 Verbinflection 60
8.3.2 Non-salient sentences. 61
8.3.3 Inmsufficient trimming 0oL 61
Conclusions 63
9.1 Overview of theresults 63
9.2 Possible improvements 64

9.3 Finalremarks 64

Chapter 1

Introduction

1.1 Text summarization

The digital age has given us access to an increasing amount of information -
historical documents are being digitized, and new information is produced at
an astonishing rate. This flood of information can even lead to a state that
is sometimes referred to as information overload, which Wikipedia defines
as:

Information overload refers to the state of having too much
information to make a decision or remain informed about a topic.

Text summarization can provide a partial solution to this problem. By
giving short, but accurate summaries of a text a reader can quickly select
texts that are interesting and capture the relevant information given by that
text.

Not surprisingly, text summarization is currently an active field of re-
search. Traditionally, this task has been performed by selecting and concate-
nating salient sentences from a text. However, this often leads to summaries
that are not very consistent or fluent. In recent years wide-coverage parsing
and increased computational power has opened doors for more sophisticated
methods for the summarization of texts.

1.2 Headline generation

An important area of research within text summarization is sentence com-
pression. The goal of sentence compression is to shorten a given sentence to
a prespecified length. For instance, if we were given the task to shorten the

following sentence!:

"http://news.bbe.co.uk/2/hi/asia-pacific/7498849.stm

)

6 CHAPTER 1. INTRODUCTION

Senior diplomats are meeting in Beijing to thrash out the next
move in the long-running mission to end North Korea’s nuclear
ambitions.

This sentence can be shortened to nearly half its length, without a sig-
nificant loss of meaning:

Senior diplomats are meeting in Beijing to end North Korea’s
nuclear ambitions.

Sentence compression is useful for various tasks such as the extraction of
core semantics of a sentence, or for generating short headlines from salient
sentences. While headline generation can be useful on its own, it’s also a
well-defined task for researching and improving sentence compression: there
is a wealth of training material available in the form of newspaper or mag-
azine headlines, and it is a task that can relatively easily be verified by
humans. For this reason, this thesis focuses on the headline-generation task
within sentence compression.

Practical use can include generation of headlines for large text collections
that are being digitized. While it is unconceivable that a machine will
take over this work from newspaper editors, it can be useful for digitized
newspaper articles. While they already have headlines, some articles have
very short (e.g. one or two word) headlines. They were never written to be
used in a digital context, where we quickly skim RSS feeds to get the latest
BBC news, or search engine summaries of web pages.

1.3 Approach

Various different methods have been proposed in the past to generate head-
lines for newspaper articles. Virtually all of the methods developed in recent
years make use of parse trees of newspaper article sentences and newspaper
headlines. Usually, the first sentence of an article is selected, and words
or constituents that are deemed unimportant are removed. This process is
often referred to as trimming. Like many other problems in computational
linguistics, such as part-of-speech tagging, most methods can be categorized
in statistical data-driven and (rule-based) linguistic methods. Well-known
approaches in both categories are respectively the noisy-channel model for
sentence compression, and the hedge trimmer.

In other areas of research, such as part-of-speech tagging or chunking,
transformation-based learning has proven to be a good method that com-
bines advantages of purely statistical methods with rule-based methods. In
this thesis, I report on a modified transformation-based learning system for
sentence compression, or more specifically, newspaper headline generation.
My hypothesis is that transformation-based learning can be used reliably

1.4. SYSTEM OVERVIEW 7

for headline generation. Additionally, I expect that the rules created by this
system mirror the linguistic insights that have fueled systems with hand-
written rules such as the hedge trimmer. As a result, a tranformation-based
learning system can provide good insights in what elements of a sentence
don’t contain viable information, and perform the task of headline genera-
tion well.

During the project, it quickly became clear that no useful training ma-
terial was readily available for making a system that could generate Dutch
headlines. For this reason, and the lack of time to make a hand-written head-
line corpus, a procedure for automatic generation of good training material
was also devised.

1.4 System overview

While the transformation-based learning system for headline generation will
be described in detail in this thesis, this section will provide a quick overview
of the system.

The system learns rules for headline generation through a process named
transformation-based learning (TBL). TBL tries to find transformation rules
that are applicable to rewrite sentences to their target form (headlines).
During a learning cycle, all candidate rule are scored, and the candidate
rule with the highest score is the rule that is learnt during that cycle. This
process is repeated until a certain score threshold has been reached. Rules
are learnt from parse trees of uncompressed sentences and the words and
word roots of correct headlines. The resulting rules can then be applied to
the parse tree of a full sentence to generate a headline.

The sentence parse trees were generated with the Dutch Alpino parser
and grammar, which produces dependency trees. Alpino dependency trees
will be discussed in more detail in section 5.1.

Besides implementing the main learning algorithm, which is compara-
ble to that used in other TBL systems, a few specific questions required
answering:

e What kinds of rules should be supported? For instance, should the
system only use deletion rules, or also rules that allow for changing
the order of tree nodes?

e What kinds of conditions should be available for rules? A condition
restricts the application of a rule to a certain context. E.g. conditions
could make the application of a rule depend on certain attributes of
the affected node.

e How should rules be scored? This question is twofold: firstly, metrics
are required to determine if the application of a rule to a sentence parse

8 CHAPTER 1. INTRODUCTION

tree had a positive or negative effect. Secondly, it should be decided
what scores should be attached to positive and negative effects of the
application of a rule on a tree.

Most of the existing systems have requirements with respect to training
(and testing) material that only make subtree deletions useful. For instance,
the hedge trimmer has one rule that can make a subtree node the tree root,
but all other rules use some form of deletion?. Due to the looser restrictions
that were applied to the training material for this thesis, it’s useful to allow
for other types of rules as well.

The types of conditions that are used, are partly inspired by the condi-
tions used by the hedge trimmer. They mostly center around attributes of
nodes in the neighborhood of the node to which the rule is to be applied,
such as parents, siblings, and children. Since the Alpino parser provides
some very useful attributes, conditions are not necessarily dependent on e.g.
just the name of a constituent.

To determine whether the application of a rule had a positive or negative
effect, some existing measures were tested. While it may seem natural to use
a measure that compares a candidate compressed tree with the parse tree of
a correct headline, headlines are often not strictly grammatical, making it
hard to make a good parse. For this reason, it seemed more appropriate to
use a function that compares the candidate headline and the good headline
by comparing words and their order. If a candidate headline has virtually the
same words and same order as the correct headline, it’s likely to be a good
headline. Some methods from the ROUGE test suite [1] are good candidates
for providing such a function. Per rule type improvement/penalty points
were used to rate the effect a rule had on a tree.

1.5 Thesis overview

Besides this chapter, the rest of this thesis is divided in the following chap-
ters:

e Chapter 2 describes some prior research in the area of headline gen-
eration. Two major trimming methods are described (a noisy-channel
model trimmer, and the hedge trimmer), and their strengths and weak-
nesses are identified.

e Chapter 3 gives an overview of transformation-based learning method
for learning rules for various transformation tasks. It also describes
how transformation-based learning is used in part-of-speech tagging,
and how it could be used for headline generation.

20f course, selecting a node, and making it the new tree root is in effect also deletion

1.5.

THESIS OVERVIEW 9

Chapter 4 describes the methodology used for extracting training and
testing material from a newspaper corpus.

Chapter 5 gives a detailed description of the transformation-based
learning system that was written for headline generation during this
thesis project.

Chapter 7 discusses some interesting implementation details of the
headline generation system.

Chapter 6 describes the ROUGE metrics for the evaluation of text
summarization, and motivates the use of ROUGE-SU in rule learning,
and the use of ROUGE-L for evaluating the system.

Chapter 8 summarizes the results of headline generation using this
system, both by employing ROUGE-L and human inspection.

Chapter 9 analyses the fitness of transformation-based learning for
the task of headline generation, and discusses possible future improve-
ments.

10

CHAPTER 1. INTRODUCTION

Chapter 2

Prior research

In recent years, sentence compression has been an area for active research.
This research has been driven by the urge to move text compression beyond
merely the selection of salient sentences. Most recent approaches make use
of parse trees that are generated by modern, wide coverage parsers. And
analogous to many other fields of research, both statistic and linguistic ap-
proaches have been suggested. Two well-performing representatives of both
approaches are respectively the noisy-channel model and the hedge trimmer.
This section will provide a quick overview of both methods, and identify their
weaknesses.

Other recent work includes a discriminative large-margin framework by
McDonald [2] and a decision-based trimmer that is also proposed by Knight
and Marcu [3]. A simpler but faster method that relies on pattern-based
removal is described by Conroy et al. [4].

2.1 Noisy-channel model

2.1.1 Introduction

The noisy channel model is a widely-used statistic model for trying to re-
construct data that has possibly been distorted by transmission over a noisy
channel. This can also be used to model sentence compression, by regarding
the compressed sentence as the original data, and the uncompressed sen-
tence as the original data with additional noise. In other words, the task of
sentence compression is reformulated as the discovery of original data in the
longer, noisy data.

The noisy-channel model for sentence compression as described by [3]
uses parse trees obtained from a Probabilistic Context-Free Grammar (PCFG).
As such, probabilities for production rules can be used as probabilities within
the noisy-channel model.

When a sentence ¢ is encountered, we want to find a short compressed
string s that maximizes P(s | t). Through Bayesian inversion, we can re-

11

12 CHAPTER 2. PRIOR RESEARCH

define this to the maximization of P(s) - P(t | s). The model that defines
P(s) is called the source model, and the model that defines the addition of
noise, or p(t | s), is the channel model. The next sections will describe both
models in more detail.

2.1.2 The model

The noisy channel model consists of two models: the source model and the
channel model:

Source model

The source model assigns a probability to every possible compressed sen-
tence. [3] attributes two characteristics to a probable compressed sentence:
it should have a normal-looking parse tree, and normal-looking word pairs.
The first characteristic is observed through the probability of the parse tree
of the sentence, this is the normal PCFG probability that can be obtained
through multiplication of applicable rules. The probability of word pairs
within the compressed sentence is calculated through word bigram proba-
bilities. The parse tree and bigram probabilities are then multiplied.
To cite a small example from [3], consider the following tree s:

S(NP John)
(VP (VB saw)
(NP Mary))

The probability of the tree s can be calculated in the following manner
(the authors use the EOS marker at the beginning and end of the sentence):

Pree(s) = Pug(TOP — S| TOP)- Pyyy(S — NP VP | S)
P.;g(NP = John | NP) - Py,(VP — VB NP | VP)
Poyg(VP — saw | VB) - Peyg(NP — Mary | NP)
-Pyigram(John | EOS) - Pyigram(saw | John)
Pyigram(Mary | saw) - Pyigram(EOS | Mary)

Channel model

The channel model calculates the probability P(s | t) for a pair of strings
< s,t >, where s is the original sentence, and ¢ the same sentence with
the accumulated noise. The addition of noise is performed trough tree ex-
pansion. For each internal node, an expansion template is probabilistically
chosen based on the node label, and the label of its children. For example,
one expansion template for the tree listed above could add a prepositional

2.1. NOISY-CHANNEL MODEL 13

phrase with probability Peyp(S — NP VP PP | S — NP VP). An-
other possibility is to keep the node unmodified with probability Peyp(S —
NP VP |S — NP VP). When new child nodes are added, a subtree is
grown according to the P.r, probabilities of that subtree.

Of course, this is a limited expansion model, since only new subtrees can
be added (or deleted viewed from compression). It is not possible to reorder
trees, or to modify word inflections.

2.1.3 Training

The noisy-channel model is trained by using a parallel corpus of headlines,
and the corresponding first sentence of the newspaper article. The first step
that is performed, is finding the syntactic nodes of the two parse trees that
correspond. Expansion templates are then extracted from the corresponding
nodes. For instance, if the to-be compressed sentence has the following tree:

(8 (NP ...)
(VP ...)
(PP ...))

and the corresponding S node from the correct headline has the following
tree:

(s (NP ...)
(VP ...))

This yields the expansion template (S — NP VP PP | NP VP). The
frequency of this expansion can be normalized over all other expansions of
S — NPVP, so that the probability of this particular expansion can be
calculated.

The authors have used standard methods to estimate PCFG and word
bigram probabilities (from the Penn Treebank and the Wall Street Journal
respectively).

2.1.4 Evaluation

The Ziff-Davis corpus was used to train and evaluate the system. This
corpus consists of newspaper articles announcing computer products. Many
of the articles are paired with human-written abstracts. Sentence pairs were
extracted, where the compressed sentence from the abstract is a subsequence
of a full sentence from an article. In this manner, they extracted 1067
sentence pairs, of which 1035 pairs were used for training and 32 pairs were
used for testing the system.

Additionally, the system was also tested on another corpus, to see how
the system performs on a corpus where it was not trained on. This corpus

14 CHAPTER 2. PRIOR RESEARCH

consisted of the first sentence of 26 articles made available in 1999 on the
scientific C'mplg archive. The compressed sentences where written by the
authors themselves.

In their testing, their noisy-channel based system was compared to a
baseline system that makes compressions based on the highest word bigram
scores, a decision-based system, and finally the human-written compressions.
The decision-based system tries to construct a smaller tree from the parse
tree of a full sentence by applying a sequence of shift, reduce, and drop
actions as used in extended shift-reduce parsers. The decision-based model
is deterministic, it can only produce one compression per input sentence.
Since this does not give the same flexibility as the noisy-channel model and
the hedge trimmer, this thesis does not give an extensive description of the
decision-based model.

Each compression was scored by four judges on a scale from 1 to 5 on
how well each system performs with respect to importance (of selecting the
most important words from the original sentence), and the grammaticality
of the resulting compression. The judges were told that all compressions are
machine-generated, and the compressions were given in a random order.

Tables 2.1 and 2.1 show the results from these experiments. The average
scores by judges and their standard deviations are shown. The compression
rates are also shown (these are the compression rates at which the compres-
sion gives the highest score/probability, in the case of the decision-based
method there is deterministic and gives only one possible compression).
Scores for the baseline system are missing for the Cmplg corpus. Some
of the sentences in this corpus were very long, and the baseline model could
not produce compressions.

Table 2.1: Results of the baseline and noisy channel models.

Corpus | Avg. orig. length Baseline Noisy-channel

ZD 21 words Compression 63.70% 70.37%
Grammaticality | 1.78 (1.19) | 4.34 (1.02)
Importance 2.17 (0.89) | 3.38 (0.67)

Cmplg | 26 words Compression - 65.68%
Grammaticality | - 4.22 (0.99)
Importance - 3.42 (0.97)

Both the noisy-channel model, and the decision-based model perform
well compared to the baseline model. When used on a different type of
corpus, the quality of the compression of the noisy channel model declines
smoothly, while the decision-based model performs much worse.

2.2. HEDGE TRIMMER

15

Table 2.2: Results of the decision-based model and human summarization.
Corpus | Avg. orig. length Decision-based | Humans
ZD 21 words Compression 57.19% 53.33%

Grammaticality | 4.30 (1.33) 4.92 (0.18)
Importance 3.54 (1.00) 4.24 (0.52)
Cmplg | 26 words Compression 54.25% 65.68%
Grammaticality | 3.72 (1.53) 4.97 (0.08)
Importance 3.24 (0.68) 4.32 (0.54)

2.1.5 Conclusions

The noisy-channel model has the useful characteristics that most statistic
models in language processing have: they can be employed without much
manual labor, and can easily be retrained using other corpora. It also shares
a common downside: the resulting training data provides relatively little
insight, and does not have the clarity of e.g. rule-based systems. Besides
that, the noisy-channel model that Knight and Marcu use only allows for
deletions, and is not easily expandable to allow for other transformations.

2.1.6 Model extensions

Recent research has proposed extensions to the model described by Knight
and Marcu to address some of its shortcomings. For instance, Unno et
al. have extended the noisy-channel model with a maximum-entropy model
that allows for incorporation of more specific characteristics to decide which
node should be removed, such as the mother node, sibling nodes, and the
depth of the node [5]. Additionally, they have shown a bottom-up method
for better matching of parse trees of uncompressed sentences and reference
compressions during the training phase.

2.2 Hedge trimmer

2.2.1 Introduction

The hedge trimmer generates headlines for newspaper stories using linguistically-
motivated rules [6]. These rules remove constituents from the parse tree of
a sentence until a length threshold has been reached.

The first sentence of an article is used to generate the headline for an
article, because the authors found that in manual creation of headlines the
majority of headline words were extracted from the first sentence. Depend-

16 CHAPTER 2. PRIOR RESEARCH

ing on the article corpus, the authors found that on average roughly 51% to
87% of the headline words were picked from the first sentence of an article.

The trimming rules and conditions were derived from manual inspec-
tion of human-written headlines for 73 articles from the TIPSTER corpus.
Afterwards, some insights from this initial study were confirmed through
automatic analysis of 218 human-written headlines.

2.2.2 Heuristics

The heuristics for the hedge trimmer can be divided in three steps:

1. Choose the lowest leftmost S with NP, VP
2. Remove low-content units

3. Iterative shortening

The first two steps are applied once, the third step is applied iteratively
until the requested sentence length threshold is reached.

Choose the correct S subtree

During the first step, the lowest leftmost S subtree with NP and VP con-
stituents is chosen. This step relies on the projection principle [7]. In human-
generated headlines predicates always projected a subject, so the application
of the hedge trimmer should also result in sentences that conform to this
rule. The following example is given by the authors, bold-faced material is
retained, italic material is eliminated:

[S [S [NP Rebels] [VP agree to talks with government]| officials
said Tuesday.]

If the requirement of this step can not be fulfilled, the lowest leftmost S
node is selected. If there is no S node, the root of the parse tree is selected.

Remove low-content nodes

During the second step, some low-content nodes are removed. The simplest
low-content nodes that are removed are the determiners the and a. Other
determiners, such as negative determiners and quantifiers are not removed,
because they can provide vital information that should not get lost during
headline generation.

Additionally, the authors found that time expressions can be removed.
Although they do provide content, they are often not necessary to represent
the who/what content of the story. For instance, “the Democratic primary

2.2. HEDGE TRIMMER 17

season finally draws to a close Tuesday”, can be shortened to “the Demo-
cratic primary season finally draws to a close”, and still cover the content of
an article. However, examples where the time expression is important are
not unthinkable.

The hedge trimmer removes time expressions by marking them first,
and then removing subtrees having the structure /PP ... [NP [X] ...] ...]
and [NP [X]], where X is a time expression. These removals can lead to
ungrammatical sentences, but the authors say that this often pans out, be-
cause the ungrammatical fragments stand a good chance of being removed
in subsequent steps.

The following example shows the removal of both determiners, and time
expressions:

[Det The] State Departement [PP [IN on]/ [NP [NNP Friday/]] lifted
[Det the] ban it had imposed on foreign flyers.

Iterative shortening

The last step removes rightmost phrasal nodes iteratively until the length
of the sentence has reached the threshold. There are four rules in this step:

1. XP-over-XP removal: in structures of the form [XP [XP ...] ...] re-
move the other children of the higher XP, where XP is NP, VP, or
S.

2. Removal of preposed adjuncts: all the human generated headlines ig-
nored the preamble of the story. This is phrasal material occurring
before the subject of the sentence. In structures of the form /S ... [XP
...] [NP ...] [VP ...]]], where S is the root node, XP should be deleted.

3. Removal of the deepest rightmost PP backward until length is below
the threshold.

4. Removal of the deepest rightmost SBAR backward until length is be-
low the threshold.

The PP and SBAR removal rules are derived from the observation that
fragments at the beginning of a sentence tend to have more headline words
than the end. Still, these rules can remove vital information, and should be
applied as a last resort, and with care. Both rules are applied with a back-off
option. This means that if PP removal does not result in a sentence that
is shorter than the specified threshold, the tree is restored in the previous
state, and SBAR removal is attempted. If this does not cause the threshold
to be reached, the PP rule is applied as well.

The following four compressions show the rules described above in action:

18 CHAPTER 2. PRIOR RESEARCH

1. [S [Det A] fire killed [Det a/ [NP [NP firefighter]| [SBAR who was
fatally injured as he searched the house] |]

2. [S [PP According to a now-finalized blueprint described by U.S. officials
and other sources| [Det the] Bush administration plans to take
complete, unilateral control of [Det a/ post-Saddam Hussein
Iraq |

3. [S More oil-covered sea birds were found [PP over the weekend]]

4. [S Visiting China Interpol chief expressed confidence in Hong
Kongs smooth transition [SBAR while assuring closer cooperation
after Hong Kong returns/]

2.2.3 Evaluation

The authors of the hedge trimmer tested their system on two corpora. The
first corpus consisted of 100 reference headlines that were generated for 100
AP stories from the TIPSTER collection for August 6, 1990. These 100
stories were not used for previous testing of their system or evaluated by
the authors. The other corpus consisted of 2496 manual abstracts for the
DUC2003 10-word summarization task as reference compressions for 624
documents used in that task.

The system was evaluated with BLUE, a system for automatic evaluation
for machine translation'. The system was compared with a noisy-channel
model for headline generation. The noisy-channel model was tested on both
the first sentence of an article, and the first 60 words. Table 2.3 shows the
BLUE scores using trigrams, and the 95% confidence interval for the score.

Table 2.3: Hedge trimmer BLUE results.
AP900806 DUC 2003
HMMG60 0.0997 (0.0322) | 0.1050 (0.0154)
avg len: 8.62 avg len: 8.54
HMM1Sent | 0.0998 (0.0354) | 0.1115 (0.0173)
avg len: 8.78 avg len: 8.95
HedgeTr 0.1067 (0.0301) | 0.1341 (0.0181)
avg len: 8.27 avg len: 8.50

The hedge trimmer scores slightly better on both data sets, but the
authors the results are not statistically significant.

The authors contend that automatic evaluation does not show the dif-
ference in quality between the systems. Each of the 100 headlines (per

'See chapter 6 for more information about BLUE.

2.2. HEDGE TRIMMER 19

system/variation) that was generated for the 100 AP stories extracted from
the TIPSTER corpus was evaluated by a human. Each headline was given
a score of 1 to 5. The average score for the HMM hedger was 3.01, with
a standard deviation of 1.11. The hedge trimmer had an average score of
3.72 with a standard deviation of 1.26. Using a t-score this difference is
significant with a confidence greater than 99.9%.

2.2.4 Conclusions

In addition to good performance, the hedge trimmer uses sound linguistic
underpinnings that most statistical headline generation systems miss. It
uses rules that are linguistically motivated, and the authors of the hedge
trimmer show that there is also statistical evidence to support their choice
of rules.

Unfortunately, the hedge trimmer was not applicable as-is. The depen-
dency trees produced by the Alpino parser differ very much from the parse
trees generated by the parser that the authors used?. Additionally, Alpino
does not mark time expressions analogous to the BBN IdentiFinder, making
it hard to delete time expressions without further work.

Of course, it would have been possible to rewrite the hedge trimmer
rules for the Alpino dependency grammar. But this is not necessary if we
can tackle another problem with the hedge trimmer: the need to manually
write (and in this case rewrite) rules for trimming. If trimming rules can be
generated automatically, this would be cheaper than the manual labor of de-
signing rules, while still producing readable rules that may reflect linguistic
intuitions.

2The BBN parser.

20

CHAPTER 2. PRIOR RESEARCH

Chapter 3

Transformation-based
learning

3.1 Introduction

Transformation-based learning (TBL) [8] is a widely-used learning algorithm
for learning rules for various tasks, such as part-of-speech tagging, unknown
word guessing, and noun phrase chunking. This chapter will give a short
introduction to TBL, show an example of how TBL is used for part of speech
tagging, and finally describe how the task of learning rules for tree trimming
differs from traditional TBL tasks.

In summary, TBL tries to find rules to successfully rewrite a dummy (im-
perfect) corpus to a ‘gold standard’ corpus that is known to be correct. The
idea is that if the dummy corpus resembles raw material outside the training
corpus, and the gold standard corpus resembles the ideal transformation of
the raw material, the same rules can be used outside training conditions.

An important question is how rules are learnt. Rules change units within
a corpus, based on their contexts. Learning different contexts without pre-
determined boundaries would create an impractical number of candidate
rules. For this reason, most TBL systems use rule templates to generate
rules. During the first step of the learning process, all possible rules given
the rule templates are gathered, resulting in a large set of candidate rules.

The second step gives a score to all possible rules. This can be done by
looking what effect the rule has if it were applied to the corpus. At each spot
in the dummy corpus the rule is applied, it can correct an error, introduce
an error, or transform an error into another error. The score of a rule is
determined by subtracting the number of errors that were introduced from
the number of errors that were corrected. The rules can then be ordered by
decreasing score, and the rule that had the highest score is stored in a list.

After determining the best-scoring rule, this rule is applied to the dummy
corpus. Since it (given a proper threshold) made more corrections than it did

21

22 CHAPTER 3. TRANSFORMATION-BASED LEARNING

introduce errors, the transformation brought the dummy corpus closer to the
gold standard corpus. After applying the rule, all steps are repeated until
a predefined threshold is reached. The result is a set of rules that rewrite
were proven to rewrite the dummy corpus to the gold standard corpus best.

It should be noted that in most traditional TBL tasks units are only
changed. Since this is non-destructive, it’s often not necessary to give pun-
ishment for errors more than corrections.

3.2 Transformation-based learning in part-of-speech
tagging

3.2.1 POS tagging

One application were TBL gained a lot of popularity is part-of-speech (POS)
tagging, most prominently through the Brill tagger [8]. POS tagging is the
task of assigning lexical categories (tags) to the words in a sentence. For
instance, the sentence “The cat is on the mat.” could be tagged in the
following manner, with the widely-used tag set from the Brown corpus':

The/at cat/nn is/bez on/in the/at mat/nn ./.

Here, words and tags are separated with a forward slash. at is an article,
nn is a noun, 4n marks a preposition, and bez is the verb ‘to be’ in present
tense, third person singular.

POS tagging can be performed fairly accurately by counting word and
tag frequencies from a corpus, and assigning the tag that maximizes the
P(w|t), which can be calculated with:

P(wlt) = (3.1)

Using this simple method for tagging, an accuracy of over 93% was ob-
served for known words?. Unfortunately, this is not good enough due to two
problems. First of all, even with sophisticated techniques, the accuracy for
tagging of unknown words is nearly always worse. So, further work is re-
quired to improve the tagging of unknown words. Secondly, such accuracies
are often not good enough for applications that rely on the results of POS
tagging. For instance, parsers generally perform much better when the POS
tagging was performed more accurately.

"http:/ /www.scs.leeds.ac.uk/ccalas/tagsets/brown.html
2Known words are words that were seen in the training material.

3.3. APPLICATION TO TRIMMING 23

3.2.2 Improvement through transformation-based learning

To see how TBL can help to improve tagging, let’s have a look at an example
of a typical tagging error:

Jack/np had/hvd a/at drink/vb ./.

Here, the word drink is tagged as a verb, where it should have been
tagged as a noun. This error arises, because P(drink|vb) is larger than
P(drink|nn). As humans, we can easily spot that by looking at the context
- drink it is preceded by an article, this in conjunction with the verb had gives
us enough reason to believe that drink is a noun. Or, we could formulate a
simple rule (following the syntax of the aforementioned Brill tagger)

vb nn PREVTAG at

which states that a vb tag should be replaced with nn if the previous tag
is at. And this is exactly what the learning phase of the Brill tagger does,
it generates such correction rules through TBL.

As mentioned previously, TBL normally uses rule templates to generate
rules. Table 3.1 shows some of the templates that are used by the Brill
learner:

Table 3.1: Examples of Brill tagger rule templates

A B PREVTAG C Change tag A to B if the previous tag is C

A B PREV1OR2TAG C Change tag A to B if one of the previous
tags is C

A B NEXTTAG C Change tag A to B if the next tag is C

A B NEXT10R2TAG C Change tag A to B if one of the next two
tags is C

A B SURROUNDTAG C D | Change tag A to B if tag A is (directly)
surrounded by C and D

The general TBL procedure described earlier in this chapter is also ap-
plied in the Brill learner, where the dummy corpus is the training corpus
tagged with the tags that maximize P(wlt). Applying such transformations
to the Brown corpus with the Penn treebank tagset improved known word
accuracy from 93.3% to 94.5%, and unknown word accuracy from 74.7% to

80.8% [8].

3.3 Application to trimming

TBL seems to be a fit candidate for learning rules for trimming to gener-
ate newspaper headlines. If headlines are generated by selecting important

24 CHAPTER 3. TRANSFORMATION-BASED LEARNING

words from the first sentence of a newspaper article, we can formulate this
task in reverse: headlines can be generated by applying transformations to
the first sentence of a newspaper article.

Since the words (or roots, as we will see later) in the headline are a
subset of those in the first sentence, one of the main operations will in
effect be the deletion of words. This is an operation that does usually not
occur in traditional TBL tasks, which center around changing units (such
as tags). In these tasks it often occurs that a rule changes a unit, but
changes it back to the original value given a more specific context. Most
transformations involved in headline generation do not have this property
and are destructive. This should be taken into account during the scoring
of rules.

An additional difference compared to traditional TBL tasks, is that the
material on which transformations are performed, namely parse trees, are
not one-dimensional. A given node can have a parent, one or more children,
and one or more siblings. This requires thought about the order wherein
trees can or should be traversed, and what effect operations can have on
this traversal. On large training sets this can also lead to a large number of
rule candidates being generated.

The topic of using TBL for headline generation will be described in detail
in chapters 5 and 7.

Chapter 4

Generation of a headline
corpus

4.1 Introduction

Good corpora containing articles and headlines are required for testing head-
line generation systems. Systems that are not purely based on hand-written
rules also require sufficient training material. For instance, Knight and
Marcu use over 1,000 full sentence-headline pairs for training their noisy-
channel model [3].

Unfortunately, no such corpora are readily available for Dutch. Usually,
headline corpora are created through manual labor and verification. Unfor-
tunately, there was not enough time to build a large well-validated corpus
for this thesis project. For this reason, it was attempted to generate training
material automatically.

Before looking at the actual training material generation procedure, some
criteria have to be established to which training material should conform.
Previous research seems to use training material which has the following
implicit or explicit requirements:

1. The words used in the headline should also occur in the untrimmed
sentence, and in the same order as in the untrimmed sentence. Or
in other words, the headline should be a subsequence of the original
sentence.

2. The headline should capture the essence of the untrimmed sentence.

3. The headline should, in most occasions, be shorter than the untrimmed
sentence. Sometimes the sentence is already brief enough to serve as
a headline.

The first criterium can be problematic. While it seems fair to restrict
headlines to being a subsequence of untrimmed sentence, it’s often useful to

25

26 CHAPTER 4. GENERATION OF A HEADLINE CORPUS

change the word order and the inflection of words. For instance, consider
the following untrimmed sentence, and an appropriate headline:

Untrimmed: Spanje, dat gisterenavond Duitsland in de finale met
1-0 versloeg, heeft de EK beker gewonnen.
(Spain, which has beaten Germany in the final with
1-0, has won the EK cup.)

Trimmed: Spanje won de EK beker.
(Spain won the EK cup.)

Of particular note here is the change of the past participle heeft gewonnen
(had won) to the past tense won. The word order changes (won takes the
place of heeft), as well as a verb through the change in inflection!. Since
such changes are common in Dutch, the task can become too artificial if
absolutely no changing of word order and inflection is allowed.

For this reason, it was decided to change the first criterium to

1. The roots of the words in the headline should be a subset of the roots
of the words in the untrimmed sentence, where ‘root’ is defined as the
word without its inflectional endings.

Of course, this looser criterium makes headline generation harder, since
it can not solely rely on the deletion of words.

4.2 Procedure

An easily reproducable procedure was used to generate the training data,
that relies on software that can determine the roots (or lemmas) of words,
and the availability of newspaper text with headlines.

First, pairs of headlines and first sentences of newspaper articles were
extracted. For the experiments described in this thesis, all AD, NRC, Parool,
Trouw, and Volkskrant articles from the 2002 Twente News Corpus? were
used. For convenience, this subset will be named News2002 in this thesis.
The headlines and sentences were then parsed using the Alpino parser. Full
parses are not required for this step, but Alpino includes the roots of words
in the parse trees that are generated. And since the sentence parse trees are
used for training and testing later on, it was decided to make full parses at
this stage.

These two steps provide many headline-sentence pairs, but a lot of head-
lines do contain words that are not used in the first sentence, or do not

!The system described in this thesis will try to deal with changes in word order. But,
as we will see, it turns out to be hard to solve this particular issue without sacrificing the
generic nature of a system.

2A Dutch corpus containing news paper articles, magazine articles, teletext, and news
bulletin auto-cues.

4.2. PROCEDURE 27

use any of the words in the first sentence. Therefore, pairs that conform to
the revised first criterium outlined in the previous section are extracted by
treating the headline and first sentence as sets of roots, where the headline
should be a subset of the full sentence.

The previous step leaves us with material that is almost ready for train-
ing and testing. Some testing showed that including one-word headlines has
a detrimental effect on the learning process. Since it is more likely that
the roots of a headline are a subset of the roots of a full sentence when a
sentence is shorter, the generated corpus consists of many short headlines,
including a large number of one-word headlines. 4.1 shows the distribution
of headline lengths of the headlines that were generated with this procedure.

Headline length frequencies

3000

2500

2000

1500

frequency

1000

500

0
1 2 3 4 5 6 7 8 9 10
length

Figure 4.1: Headline length distribution of the 9905 headlines of the
News2002 corpus, where headline roots are a subset of the first sentence
roots.

The effect of these one-word headlines is that rules that wildly delete
subtrees and introduce errors, are often in points compensated by the volume
of deletions that are useful for generating one-word headlines. For this
reason, one-word headlines were not considered for inclusion in the training
data. Deleting one-word headlines left enough material for training and
testing the system.

By applying this procedure to the News2002 corpus, 7233 headline/sentence
pairs were extracted.

28 CHAPTER 4. GENERATION OF A HEADLINE CORPUS

Chapter 5

TBL for trimming

5.1 Introduction

This chapter describes the implementation of the transformation-based learn-
ing system that was implemented during this thesis project. The learning
component revolves around a loop that finds applicable rules, scores these
rules, and applies the rules to the corpus of candidate headlines. This process
is repeated until the highest rule score drops below a prespecified threshold.

A rule consists of an action and a set of conditions. An action modifies
a parse tree. For instance, an action could delete a node. An action is only
applied to a parse tree node, when all the conditions that are associated
with a rule are found to be true. Rules are generated using a rule template.
A rule template specifies an action, and a set of condition types. An actual
rule is generated when a rule template is applied to a parse tree node. This
model provides the flexibility to easily create new rule templates, and allows
for future additions of actions and condition types.

The input to the learning component are parse trees of the first sentence
of a news article and the (correct) headline for the article. No parse is
needed of the correct headline, only the actual headline and the word roots.
The parse trees for the first sentence are generated with the Alpino parser.
Alpino can output parse trees in various formats, such as XML. Figure 5.1
shows the tree that is generated by Alpino for the sentence “Jan ziet de
man.” (“Jan sees the man.”). The XML file representing this structure is
shown in listing 5.1.

Various useful attributes are included in the XML representation. Im-
portant attributes for this application are!:

e begin/end: The begin/end positions of the node.

e cat: The category of the node.

! An extensive description of the attributes, and tools to analyze them can be found at:
http://www.let.rug.nl/ vannoord/alp/Alpino/TreebankTools.html

29

30 CHAPTER 5. TBL FOR TRIMMING

top
top
smain punct
su hd objl
name verb np
Jan zie A
det hd
det noun
de man

Figure 5.1: A parse tree for the sentence “Jan ziet de man”.

e rel: The dependency relation of the node.
e word: The word/surface form of a leaf node.

e root: The root form of a word.

The actual sentences can easily be retrieved from this tree by retrieving
all nodes with the word attribute, and then ordering them by their positions
as indicated by the begin attribute.

5.2 Condition generators

As mentioned before, the system uses conditions to determine if a rule is ap-
plicable to a node. In a rule template, a condition is only partially specified
using a condition generator. A condition generator specifies the condition
type and the attribute which a condition checks, but not the actual value
of the attribute. All condition generators operate relative to a node, and if
it is used on a node, it returns an actual condition instantiated from that
node. Currently, there are three types of conditions:

e HasAttribute: this condition is true when the node has the specified
attribute/value pair. For instance, a condition could say that the rel
attribute of a node has the value su.

e HasParent: this condition is true when the parent (or other other
ancestor, as defined by the number of steps that should be traversed

5.2. CONDITION GENERATORS 31

Listing 1 XML representation of the parse tree for “Jan ziet de man.”

<?7xml version="1.0" encoding="IS0-8859-1"7>
<alpino_ds version="1.2">
<node begin="0" cat="top" end="5" id="0" rel="top">
<node begin="0" cat="smain" end="4" id="1" rel="--">
<node begin="0" end="1" id="2" pos="name" rel="su"
root="Jan" word="Jan"/>
<node begin="1" end="2" id="3" pos="verb" rel="hd"
root="zie" word="ziet"/>
<node begin="2" cat="np" end="4" id="4" rel="objl">
<node begin="2" end="3" id="5" pos="det" rel="det"
root="de" word="de"/>
<node begin="3" end="4" id="6" pos="noun" rel="hd"
root="man" word="man"/>

</node>
</node>
<node begin="4" end="5" id="7" pos="punct" rel="--"
root="." word="."/>
</node>

<sentence>Jan ziet de man .</sentence>
</alpino_ds>

upwards, i.e. 1 for the parent, 2 for the grandparent) has the specified
value/attribute pair.

e HasSibling: this condition is true when the sibling at a specified
position (e.g. -1 for the sibling left of the current node, or I for the
sibling right of the current node) has a attribute/value pair.

Each condition type has its own condition generator. Suppose that we
created a generator for the HasAttribute condition with rel as its target
attribute, and a condition generator for the HasParent condition with cat
as its target attribute, and apply it to the node with the np category of the
parse tree described in listing 5.1, this would generate two conditions:

e A HasAttribute condition matching nodes with attribute rel, having
the value obj1.

e A HasParent condition matching nodes that have a parent with at-
tribute cat, having the value smain.

32 CHAPTER 5. TBL FOR TRIMMING

5.3 Actions

Actions modify a parse tree node, or a node relative to a parse tree node,
when all the rule conditions are satisfied. The system currently knows four
different actions, that can be applied to a given node:

e Delete: actions of this type delete the node (and all subtrees) when
its conditions are satisfied.

e SwapSibling: sibling swapping actions swap a node with one of its
siblings? when its conditions are satisfied. The sibling is specified as a
position relative to the node (e.g. -1 for the sibling left of the current
node).

e MakeRoot: actions of this type make the node, if it satisfies the asso-
ciated conditions. the root of the parse tree.

e ReplaceParent: actions of this type replace the parent of the node with
the node itself when its conditions are satisfied.

In the following sections, these actions will be described with some ex-
amples.

5.3.1 Deletion actions

Deletion actions are by far the most frequent actions produced during the
learning process, since they embody the main task of the headline generation
process, deleting words. For instance, the highest scoring rule that was
generated from the training corpus removes punctuation (periods):

DeleteAction ANY_NODE O
[HasAttributeCondition "word" = "."]
[HasAttributeCondition "pos" = "punct"]

The first element of this rule specifies the name of the action, the second
the scope of the action and rule, which will be described later. The third
element (in this case 0) determines what node should be deleted. 0 will
delete the node itself, 1 its parent, 2 its grandparent, etc. All bracketed
elements are the conditions that are associated with this action. So, here a
node is deleted if it holds a period character with the punct part-of-speech
tag.

2Nodes that share the same parent.

5.3. ACTIONS 33

5.3.2 Parent replacement

The ReplaceParent action occurs fairly often in more specific rules. We will
look at an example where this action is useful. In this example a multi-word
unit within a subject can represent the whole subject in the compressed
sentence. The following rule makes this transformation:

ReplaceParentAction RIGHTMOST_NODE

[HasParentCondition 1 "rel" = "su"]
[HasParentCondition 1 "cat" = "np"]
[HasAttributeCondition "rel" = "app"]

[HasAttributeCondition "cat" = "mwu"]

For example, consider the sentence “De Zweed Magnus Wislander, de
speler van de eeuw, verlaat Bundesligaclub THW Kiel.” (“The Swede Mag-
nus Wislander, the player of the century, leaves Bundesliga club THW
Kiel.”). The parse tree for this sentence is shown in figure 5.2. In com-
pressed variants of such sentences, the determiner and head noun of the
subject can often be deleted, keeping a multi-word unit, that is often a
name. In this case, there is also an additional NP that can also be re-
moved. Rather than having a collection of deletion rules that are often less
specific, this compression can be performed by replacing the subject node
with the multi-word unit. This transformation automatically removes ‘de
Zweed', and ‘de speler van de eeuw’, compressing the sentence to “Magnus
Wislander verlaat Bundesligaclub THW Kiel.”3 (“Magnus Wislander leaves
Bundesliga club THW Kiel.”).

5.3.3 Make root actions

The MakeRoot action takes a node that satisfies the conditions that are as-
sociated with a rule, and makes it the root note of the parse tree (or more
specifically, the child of the TOP node in Alpino parse trees). This action
can be seen as a generalization of the ReplaceParent action. ReplacePar-
ent could be extended to allow replacement of grandparents, etc., but the
MakeRoot action allows for making a node at any depth the root node. This
action was specifically added to be able to make a template that mirrors the
first rule of the hedge trimmer, as we will see in section 5.4.1.

One particular case where this action is very useful, is the following rule:

MakeRootAction LEFTMOST_NODE
[HasAttributeCondition "rel" = "sat"]
[HasAttributeCondition "cat" = "smain"]

3In this sample compression the commas are also removed, while this won’t actually
happen during this transformation, other rules take care of this.

34 CHAPTER 5. TBL FOR TRIMMING

top
top

punct punct smain punct

e

su hd objl
np verb mwu

/\ verlaat /\

det hd app app mwp mwp mwp
det noun mwu np name name name

de Zweed /\ /\ Bundesligaclub THW Kiel

mwp mwp det hd mod
name name det noun pp

Magnus Wislander de speler /\

det hd
det noun

de eeuw

Figure 5.2: A parse tree for the sentence “De Zweed Magnus Wislander,
de speler van de eeuw, verlaat Bundesligaclub THW Kiel.” (note that a
parse failure occurred here: ‘Bundesligaclub’ should be the head noun of
the indirect object’.

Sometimes headlines have some material before the main sentence. Often
this is a single word that contains more information about the subject of
the article. For instance:

Basketbal: Chicago Bulls heeft Jalen Rose van de Indiana Pacers
overgenomen.

(Basketball: Indiana Pacers have traded Jalen Rose to the
Chicago Bulls.

Alpino parses such cases by subdividing this discourse unit relation into
a nucleus (“Basketball”) and a satellite “Chicago [...] overgenomen.”. Some-
times there are even larger nuclei, such as a full prepositional phrase, for
instance:

Van de Wiener Sangerknabe tot componist van de wereldhit

‘Frankenstein!’: HK Gruber is een prettig gestoord fenomeen.
(From the Wiener Sangerknabe to composer of the world hit
‘Frankenstein!’: HK Gruber is a pretty crazy phenonemon.

In nearly all cases the interesting headline words are in the satellite if it
has a smain dependency relation, as expressed in the rule shown above. So,
this rule will effectively retain the satellite of the discourse unit (“Chicago

5.3. ACTIONS 35

Bulls heeft Jalen Rose van de Indiana Pacers overgenomen.” and “HK
Gruber is een prettig gestoord fenomeen.” in the examples above) and
remove all other material.

5.3.4 Sibling swapping

The SwapSibling action primarily occurs in fine-grained rules. It’s some-
times useful to swap constituents to get a more headline-like sentence. For
example, consider the sentence “Voor Dennis van Scheppingen is het toer-
nooi van Chennai ook voorbij.” (literal: “For Dennis van Scheppingen is
the tournament of Chennai also over.”). The parse tree for this sentence is
shown in figure 5.3. At some point the sentence head verb is is removed.
Then it can become viable to swap the subject and the PP modifier. With
some additional removals this can lead to a headline like “Toernooi Dennis
van Scheppingen voorbij” (literal: “Tournament Dennis van Schappingen
over”).

As expected, this is one of the sibling swapping rules that were generated:

SwapSiblingAction ANY_NODE

[HasAttributeCondition "rel" = "mod"]
[HasAttributeCondition "cat" = "pp"]
[HasSiblingCondition 1 "rel" = "su"]
[HasSiblingCondition 1 "cat" = "np"]
top
top
smain punct
mod hd su mod predc
pp verb np adv adj
/\ ben % ook voorbij
hd objl det hd mod
prep mwu det noun pp
voor %\ het toernooi /\
mwp mwp mwp hd objl
name name name prep name
Dennis van Scheppingen van Chennai

Figure 5.3: A parse tree for the sentence “Voor Dennis van Scheppingen is
het toernooi van Chennai ook voorbij”.

Swapping is potentially possible in two directions, but swapping with a
node on the left can also be expressed with swapping with a node on the

36 CHAPTER 5. TBL FOR TRIMMING

right, seen from the left node. So, for simplicity a SwapSibling action always
swaps the current node with the sibling on the right.

A limitation of the current SwapSibling action is that it is limited to
swapping with the sibling that’s immediately right of the current node,
within the same subtree.

5.3.5 Rule scope

Each rule requires a parameter that specifies the scope of the rule. There
are three possible rule scopes:

e Any: rules with this scope are applied to any node that satisfies the
conditions of a rule. The parse tree is processed breadth-first.

o Leftmost: rules with the leftmost scope process the tree in a left-right
order. If the rule could be applied to a node, the rule application
process is stopped. In effect, the rule only operates on the leftmost
node satisfying the conditions.

e Rightmost: this scope has the same behavior as the leftmost scope,
but then for the rightmost node satisfying the rule conditions.

The scope is specified in a rule template, and is used in all rules that
were generated with that template.

5.4 Templates

As described in section 5.1, rules are generated from a rule template that

specifies an action and a set of condition types. Templates are currently

codified in the Java source code of the rule learner, but it would be easy to

create a format and a parser for specifying the rules in an external text file.
This is an example of what a rule template can look like:

Set<ConditionGenerator> condGens = new
HashSet<ConditionGenerator>() ;
condGens.add (new HasAttributeCondition.Generator("pos"));
condGens.add (new HasAttributeCondition.Generator ("word"));
RuleTemplate ruleTemplate = new RuleTemplate(RuleScope.ANY_NODE,
new DeleteAction(), condGens);

This is a typical rule template for generating word-based rules. A rule
template is constructed from a set of conditions and an action. In this case,
there are two condition generators, namely a condition generator for the
pos attribute of nodes, and a condition generator for the word attribute
of nodes. Since every parse tree node that represents a word has these

5.4. TEMPLATES 37

attributes, this template will generate a rule candidate for every word node.
The rule discussed in section 5.3 that removed punctuation, was one of the
rules generated through this template.

This notation will be used in the examples of rule templates that follow,
because the syntax is likely to be familiar to most readers, and they form a
direct representation of the actual rule template.

The system was tested with two sets of rule templates: a set of templates
that mirrors the rules used by the hedge trimmer, and a set that uses these
rules plus some additional rules. The following two sections will describe
the hedge trimmer-inspired rule templates, and the extra templates.

5.4.1 Hedge trimmer-like templates

The first set of rule templates is based on the rules used by the hedge
trimmer, as described in section 2.2. The rule templates are described in
such a manner that the rules used by the hedge trimmer could be generated
by these templates. The rule templates that are used are described per
hedge trimmer step.

Choose the correct S subtree

The hedge-trimmer selects the lowest leftmost S subtree with NP and VP
constituents. This node is made the root of the tree. This system can gener-
ate comparable rules, through the MakeRoot action. Since Alpino describes
nodes both by its category and a dependency relation, and a declarative
sentence is indicated by the smain category, we can generate the same kind
of rules by making a template that has condition generators for the cate-
gory and relation of the node. So, we can use the following short template
to generate rules like this hedge trimmer rule:

Set<ConditionGenerator> condGens =
new HashSet<ConditionGenerator>();
condGens.add (new HasAttributeCondition.Generator("rel"));
condGens.add (new HasAttributeCondition.Generator("cat"));
RuleTemplate ruleTemplate = new RuleTemplate(RuleScope.LEFTMOST_NODE,
new MakeRootAction(), condGens);

Remove low-content nodes

The second hedge-trimmer step is to remove low-content nodes. The first
type of low-content nodes are the determiners the and a, and time expres-
sions. Rules for determiners can be generated with a simple template that
looks at the word and pos attributes of a node:

Set<ConditionGenerator> condGens =

38 CHAPTER 5. TBL FOR TRIMMING

new HashSet<ConditionGenerator>() ;
condGens.add (new HasAttributeCondition.Generator("pos"));
condGens.add (new HasAttributeCondition.Generator("word"));
RuleTemplate ruleTemplate = new RuleTemplate(RuleScope.ANY_NODE,
new DeleteAction(), condGens);

To allow for a bit more abstraction, a comparable rule with condition
generators for pos and rel attributes was also added. Besides removing
determiners, rules generated with these templates were also very useful to
remove punctuation.

Since a tool like BBN IdentiFinder was not readily available for Dutch,
we can not mark time expressions. So, instead, the system has to rely on
finding words that are used in time expressions that can be removed. The
hedge trimmer removes subtrees having the structure /PP ... [NP [X] ...]
.../ and [NP [X]], where X is a time expression. As in previous examples,
we can rely on the condition generators the capture the phrasal structure.
To identify and remove phrases, condition generators for the word and pos
attributes were used to identify interesting words, and condition generators
for the cat and rel attributes on parent nodes were used. If all conditions
are satisfied, the parent node is removed. The following snippet shows the
rule template that is used:

Set<ConditionGenerator> condGens =

new HashSet<ConditionGenerator>();
condGens.add(new HasAttributeCondition.Generator("pos"));
condGens.add (new HasAttributeCondition.Generator("word"));
condGens.add(new HasParentCondition.Generator("rel"));
condGens.add(new HasParentCondition.Generator("cat"));
RuleTemplate ruleTemplate = new RuleTemplate(RuleScope.ANY_NODE,

new DeleteAction(1), condGens);

The additional parameter 1 to the Delete action indicates that the node
above the current node should be deleted (one level up). A comparable
rule template is added that also has condition generators for the cat and
rel attributes of the grandparent. When all the conditions are satisfied, the
grandparent of the current node is deleted. These two templates cover the
rules that can be generated for removal of phrases containing time expres-
sions.

Iterative shortening

The final step of the hedge trimmer is iterative shortening. Since the system
described in this thesis generates a list of rules without iteration, this step
can only be approximated. If necessary, the same rule will be generated
multiple times. The first possible shortening during this step is XP-over-XP

5.4. TEMPLATES 39

removal, where in structures of the form /[XP [XP ...] ...] other children of
the higher XP are removed. We can redefine this rule by saying that the
lower XP replaces the higher XP, which is covered by the ReplaceParent
action that was described earlier. A rule template is used with condition
generators for the cat and rel attributes of a node, and its parent:

Set<ConditionGenerator> condGens =

new HashSet<ConditionGenerator>();
condGens.add (new HasAttributeCondition.Generator("rel"));
condGens.add (new HasAttributeCondition.Generator("cat"));
condGens.add (new HasParentCondition.Generator("rel"));
condGens.add (new HasParentCondition.Generator("cat"));
RuleTemplate ruleTemplate = new RuleTemplate(RuleScope.ANY_NODE,

new ReplaceParentAction(), condGens);

It should be noted that XP-over-XP does not occur very often in Alpino
dependency trees. For instance, in the sentence “Het vuur overweldigde
de brandweerman die gewond was.” (“The fire overwhelmed the firefighter
who wounded was.”), ‘brandweerman’ becomes the head noun of the NP “de
brandweerman die gewond was”. Still, in such cases the same material gets
deleted through rules that successively deletes the NP modifier (e.g. in this
sentence the pronoun is removed first by letting the body of the subordinate
clause replace its parent, and afterwards the clause itself is removed). Since
the more general rule template described above still fulfills a role, it was
decided to include it as well.

The second iterative shortening step of the hedge trimmer removes pre-
posed adjuncts. In structures of the form [S ... [XP ...] [NP ...] [VP ...]J]],
where S is the root node, XP is deleted. While Alpino generates a different
structure, where the preposed adjunct is a modifier of the VC and a sibling
to a reference to the subject, a comparable rule template can be used. This
template uses a deletion action with a condition generator for the rel at-
tribute of the sibling of the node, and condition generators for the cat and
rel attributes of the node itself, and its parent:

condGens.add(new HasAttributeCondition.Generator("rel"));

condGens.add (new HasAttributeCondition.Generator("cat"));

condGens.add (new HasParentCondition.Generator("rel"));

condGens.add (new HasParentCondition.Generator("cat"));

condGens.add(new HasSiblingCondition.Generator("rel", 1));

RuleTemplate ruleTemplate = new RuleTemplate(RuleScope.ANY_NODE,
new DeleteAction(), condGens);

The last two iterative shortening step is the removal of rightmost PP and
SBAR nodes. This rule is reflected by a rule template based on the deletion

40 CHAPTER 5. TBL FOR TRIMMING

action with a scope on the rightmost node, and condition generators for the
rel and cat attributes of a node:

Set<ConditionGenerator> condGens =
new HashSet<ConditionGenerator>();
condGens.add (new HasAttributeCondition.Generator("rel"));
condGens.add (new HasAttributeCondition.Generator("cat"));
RuleTemplate ruleTemplate = new RuleTemplate(RuleScope.RIGHTMOST_NODE,
new DeleteAction(), condGens);

5.4.2 Extra rule templates

Besides modeling rule templates after the rules used by the hedge trimmer,
some additional rule templates that have proven to be useful were added.
These rule templates can be subdivided in three categories: deletion condi-
tioned on parent attributes, deletion conditioned on sibling attributes, and
sibling swapping. The following sections will describe these rule templates
categories.

Deletion conditioned on parent attributes

A rule template that deletes nodes based on the cat and rel attributes of
the current node and its parent was added:

Set<ConditionGenerator> condGens =
new HashSet<ConditionGenerator>();

condGens.add (new HasAttributeCondition.Generator("rel"));

condGens.add (new HasAttributeCondition.Generator("cat"));

condGens.add (new HasParentCondition.Generator("rel"));

condGens.add (new HasParentCondition.Generator("cat"));

RuleTemplate ruleTemplate = new RuleTemplate(RuleScope.ANY_NODE,
new DeleteAction(), condGens);

This template produces rules that are useful for more aggressive trim-
ming, such as the removal of pp modifiers of nps. For instance, consider
the sentence “De Drieklovendam in de rivier de Yangtze in China vertoont
scheuren.” (Literal: “The Three Gorges Dam in the river the Yangtze in
China shows cracks.”). There are two PPs in this sentence: “in de rivier
de Yangtze in China” and “in China”. Since the conditions are generated
on the dependency relation besides the category, more fine grained rules are
produced. One of the best scoring rules generated from this template is:

DeleteAction ANY_NODE O
[HasAttributeCondition "rel" "mod"]
[HasAttributeCondition "cat" = "pp"]

5.4. TEMPLATES 41

[HasParentCondition 1 "rel" = "app"]
[HasParentCondition 1 "cat" = "np"]

Application of this rule to this sentence removes “in China”, compress-
ing the sentence to: “De Drieklovendam in de rivier de Yangtze vertoont
scheuren.” A subsequent rule also removes the direct PP of the subject (“in
de rivier de Yangtze”). Such precise rules allow for fine-grained removal,
based on the compression rate that is required.

Deletion conditioned on sibling attributes

Two rule templates were added that delete a node based on attributes of its
sibling. These templates generate conditions for the rel and cat attributes
of respectively the left and right sibling, and the same attributes for the
current node. This template generates rules that become useful when very
aggressive trimming is required. For instance, in headlines that consist of
just two or three words, the direct object of the sentence head verb is often
preferred over the subject of the sentence. So, a rule is generated that deletes
the subject if it has a direct object as its sibling:

DeleteAction ANY_NODE O

[HasAttributeCondition "cat" = "np"]
[HasAttributeCondition "rel" = "su"]
[HasSiblingCondition 1 "cat" = "np"]
[HasSiblingCondition 1 "rel" = "objl"]

The following rule template is used for deletion based on the properties
of the sibling on the right of the current node:

Set<ConditionGenerator> condGens =
new HashSet<ConditionGenerator>();

condGens.add (new HasSiblingCondition.Generator("cat", 1));

condGens.add (new HasSiblingCondition.Generator("rel", 1));

condGens.add (new HasAttributeCondition.Generator("rel"));

condGens.add (new HasAttributeCondition.Generator("cat"));

RuleTemplate ruleTemplate = new RuleTemplate(RuleScope.ANY_NODE,
new DeleteAction(), condGens);

A template based on the left sibling was also added.

Sibling swapping

The merits of sibling swapping are discussed in section 5.3.4. A rule tem-
plate was necessary to operationalize this rule. Since swapping affects two
nodes (the node being processed, and its sibling), it is best to add condition

42 CHAPTER 5. TBL FOR TRIMMING

generators on these two nodes. The sibling swapping template uses condi-
tion generators for the cat and rel attributes of the current node and its
sibling:

Set<ConditionGenerator> condGens =
new HashSet<ConditionGenerator>();
condGens.add (new HasAttributeCondition.Generator("cat"));
condGens.add (new HasAttributeCondition.Generator("rel"));
condGens.add(new HasSiblingCondition.Generator("cat", 1));
condGens.add (new HasSiblingCondition.Generator("rel", 1));
RuleTemplate ruleTemplate = new RuleTemplate(RuleScope.ANY_NODE,
new SwapSiblingAction(), condGens);

Since the SwapSibling action always swaps a node with its immediate
sibling on the right side, no rule with mirrored condition generators is re-
quired.

5.5 Learning

Transformation rules are learnt in cycles, during each cycle one rule is learnt.
If the score of the best-scoring rule drops below a predefined threshold, the
learning cycle is ended. A learning cycle consists of the following steps:

1. All potentially relevant rules are discovered.
2. The rules that were discovered during the previous step are scored.

3. The rule with the highest score is selected and stored, and applied to
the dummy corpus.

In this process, two parallel corpora are used: the gold corpus containing
the correct headlines, and the dummy corpus which contains the compres-
sions that are in progress. The learning cycle attempts to find rules that
rewrite the dummy corpus to the gold corpus.

Relevant rules are discovered by traversing the dummy corpus trees,
and applying each rule template to each tree node. Application of an rule
template will generate the rule with conditions generated by the condition
generators, except if a rule template is not relevant to a node. For instance,
the application of a rule template with a condition generator that looks at
sibling node attributes will not be useful for nodes that have no sibling.

The next step is to score all the rules that were discovered. This is
done by applying each rule to a copy of each dummy corpus parse tree.
Both the unmodified dummy corpus parse tree and the copy to which the
rule was applied are compared to the reference sentence. This comparison
is performed with the ROUGE-SU measure that is described in chapter 6.

5.5. LEARNING 43

That chapter also provides the rationale for choosing this ROUGE measure
over the other ROUGE measures. If the application of the rule is found to
give an improvement, the rule gets a point. If the application of the rule
has a bad impact, a rule type-specific penalty is given. For instance, one
could give a DeleteAction a penalty of —6, meaning that if a rule had a bad
impact, 6 points are subtracted from its score. In the current system, the
penalty points are specified per action type.

For example, let’s consider the following reference sentence (R), the cur-
rent dummy corpus sentence (D) and candidate sentences (C1 and C2) that
were generated through two possible rules:

R: Spain wins European soccer championship

D: Yesterday , Spain won the European soccer championship .
Cl: Yesterday , Spain won the European soccer championship
C2: Yesterday , Spain won the European soccer .

C1 would be a good example of the frequent punctuation deletion rule,
deleting the final period. The rule that was generated by second candidate
is apparently not very useful (at least not in this context). The scoring
function compares both C7 and C2 with R, and would in this case give
scores of 0.53 and 0.28 respectively. Comparing the D with R gives a score
of 0.45. So, in this case, the rule that generated C'1 will get a point, while
the rule that generated C2 will get the penalty that was assigned to deletion
rules. Finally, the rule with the highest score is selected, and applied to the
dummy corpus.

There is an additional problem that has to be dealt with: both the orig-
inal sentences and the reference headlines vary in length. If the learning
would proceed with all sentence/headline pairs the learning process would
stagnate once some candidates have reached the length of the reference head-
line, since removing more words is likely to incur a penalty. There are two
possible solutions to this problem:

e Set a headline length threshold that is used to remove a the candidate
compression and reference headline when the candidate reaches that
threshold.

e Remove a candidate compression and reference headline once the can-
didate compression has reached the length of the reference headline.

The first solution learns rules that are oriented towards trimming sen-
tences to a headline with a certain length. For practical applications, this
would be very useful. However, for this project this seems more problematic.
First of all, if the threshold is set to a low number of words, the stagnation
of learning resurfaces since it is a milder form of having no threshold. Sec-
ondly, the News2002-based test corpus consists of headlines of a varying

44 CHAPTER 5. TBL FOR TRIMMING

length, trimming headlines to a certain length would complicate evaluation,
since we do not have a large set of reference sentences of one (predetermined)
length. Obviously, comparing a longer compression with short reference sen-
tences (or vise versa) will give bad scores.

The second solution has proven to be more useful. Since compressions
that are ‘finished’ are removed, no stagnation occurs. Besides that, the rules
that are learnt are not biased to a predefined trimming length, and can be
used to evaluate with a test corpus that has a varying length of reference
headlines. Therefor, candidate/reference pairs are removed once the length
of the candidate compression has become equal to or less than the length of
the reference headline.

While this concludes the description of the learning process, there are
some interesting implementation details, such as the optimization of the
learning cycle. These implementation details are described in chapter 7.

5.6 Trimming

After the generation of a rule set, trimming sentences is fairly simple. Each
rule is applied in the order they were learnt to the parse tree of a sentence,
until the requested length is attained. Since the system, like the hedge
trimmer, does not work with probabilities, there is no optimal headline
length. The user of a rule-based system asks the system to generate headlines
of the length that is wished.

Chapter 6

Methodology for evaluation

During this project, evaluation is useful at two stages: for evaluating the
headline generation method proposed in this thesis and other headline gen-
eration methods. Additionally, an evaluation method is required to guide
the learning process. Traditionally, human judges were used to judge the
quality of compression, focusing on aspects like grammaticality and impor-
tance of compressions. The most important downside to human judgement
of compressions is that it is (time-)expensive. Additionally, human judges
are not practically usable for the learning process.

Another methodology used is the BLEU system for automatic evaluation
of machine translation[9]. BLEU uses a modified n-gram precision measure.
If we see compression as a form of translation from longer sentences to
shorter sentences, such a system can be used to compare compressed sen-
tences to correct reference compressions.

The newer ROUGE system can be seen as as an extension to BLEU,
oriented at automatic evaluation of summaries. ROUGE seems to be a very
good candidate for evaluating headline generation, and for providing metrics
to guide the learning process. In this chapter, a description of ROUGE will
be provided, followed by a discussion of which ROUGE measures seem to
be appropriate for learning tree compressions.

6.1 ROUGE

6.1.1 Introduction

ROUGE! is a system for measuring the quality of summaries by compar-
ing it to a correct summary created by humans[l]. ROUGE provides four
different measures, namely ROUGE-N, ROUGE-L, ROUGE-W, ROUGE-S
and ROUGE-SU. The following sections will describe these measures, with
an emphasis on how they can be used to compare a proposed compression

'Recall-Oriented Understudy for Gisting Evaluation.

45

46 CHAPTER 6. METHODOLOGY FOR EVALUATION

to a correct compression. For a discussion of the ROUGE measures for
comparing multiple-sentence summaries, refer to [1].

6.1.2 ROUGE-N

ROUGE-N measures co-occurances of n-grams. The ROUGE-N score can
be calculated as:

Z Countpaten(gramy,)
gramnp€S

ROUGE — N =
Zgramn esS Count(gramn)

(6.1)

Where S is the reference sentence, n is the length of the n-gram, Count(gram,,)
the number of n-grams co-occurring in the candidate and the reference sen-
tence. Since the denominator is the total number of n-grams occurring in
the reference sentence, ROUGE-N measures the n-gram recall.

Let’s look at one short example of a reference compression R and a
candidate compression C'

R: The cat is on the mat.
C: The cat on the mat.

In this example, the ROUGE-1 score is %, the ROUGE-2 score is %

6.1.3 ROUGE-L

The ROUGE-L measure is based on the longest common subsequence (LCS)
of a candidate sentence and the reference sentence. A subsequence Y of a
sequence X is a sequence that occurs in X in incremental order. The LCS is
the longest subsequence shared by two sequences. For instance, in the two
sequences

ABCD
ABDE

the LCS is ABD. A sentence can be viewed as a sequence of words, over
which the LCS can be calculated. A larger LCS could indicate that two
sentences are more similar. Of course, a generated sentence could contain
the reference sentence with a lot of additional noise. On the other hand, a
compression could be very short but an exact substring?. The precision and
recall measures are well fit to capture these potential situations:

LCS(X,Y)
m

Ry = (6.2)

2In contrast to a subsequence, a substring does not allow for gaps.

6.1. ROUGE 47

LCS(X,Y
Py = LESEY) (6.3)
n
Where X is the reference compression with length m, and Y is the can-
didate compression with length n. The F-measure can then be used as a

good measure to combine precision and recall:

(1 + 52)Rlcsplcs
Rlcs + /62P)lcs
where (3 is a constant to indicate the importance of recall over precision.
Fj.s is defined to be ROUGE-L.

An advantage of ROUGE-L (over for example, ROUGE-N) is that be-
sides capturing consecutive matches, it also accounts for non-consecutive in-
order matches. This helps giving preference to candidates with a word-order
that is comparable to the reference compression. For example, consider the
following reference R and candidates C71 and C2:

Fies = (64)

R: the cat was on the mat
Cl: the cat is on the mat
C2: the mat is on the cat

Both candidate sentences have the same ROUGE-2 score (2), while in
fact C1 has a better word order than C2. ROUGE-L reflects this, because
LCS(R,C1) > LCS(R,C?2).

A problem with LCS is that it does not take multiple LCSes, or shorter
alternative subsequences into account. For example, in C2 the LCS is “the
on the”. The sentence “the flea is on the cat” has the same LCS as C2, but
since C2 shares more meaning with R, it would be preferable to give it a
higher score.

6.1.4 ROUGE-W

While ROUGE-L has good properties, it does not take the distances between
the elements of the longest common subsequence into account. For example,
in the reference sequence A and the candidates C'1 and C2

R: ABCDEFG
Cl: ABCDHTIUJ
C2: AHBICJD

C1 and C2 share the same LCS with R, namely A B C'D. But C1 should
be preferable to C2, because it has consecutive matches. ROUGE-W solves
this deficiency by using a weighted variant of LCS (WLCS). The LCS of two
sequences can be determined with a dynamic programming algorithm that
uses a two-dimensional table. WLCS keeps an additional table that keeps

48 CHAPTER 6. METHODOLOGY FOR EVALUATION

track of the number of consecutive matches. Rather than incrementing the
LCS length with one when a new match is found, the length of the match is
incremented with f(k) where f is a weighting function, and & is the number
of consecutive matches. This function must have the property that it gives
consecutive matches get a higher score than non-consecutive matches. To
be able to normalize the ROUGE-W score, a function with a close form
inverse function is preferred. For instance, polynomial functions of the form
f(k) = k™ qualify, having a close form inverse function of the form f~1 = .

Analogous to ROUGE-L, the recall, precision, and F-measure can be
calculated:

. (WLCS(X,Y)
Rytes = f < f(m) > (65)
. (WLCS(X,Y)
Pwlcs - f (f(n)) (66)
lecs — (1 + 52)Rwlcspwlcs (67)

Rwlcs + 62Pwlcs

where WLC(X,Y) is the weighted LCS of the reference compression X
with length m and candidate compression Y with length n. Additionally,
f~1 is the inverse version of f used in WLCS.

6.1.5 ROUGE-S

ROUGE-S measures the coverage of skip-bigrams by the candidate sentence.
A skip-bigram is any pair of words in sentence order, with arbitrary large
gaps. For instance, consider the following reference sentence R, and candi-
date sentences C1, C2, and C3:

R: police killed the gunman
Cl: police kill the gunman
C2: the gunman kill police
C3: the gunman police killed

Each of these four word sentences has (;1) = 6 skip-bigrams. For example,
R has the skip-bigrams “police killed” “police the”, “police gunman”, “killed
the”, “killed gunman”, and “the gunman”. The number of skip-bigram
matches can of the reference compression and the candidate compression
can then be counted. Analogous to ROUGE-L and ROUGE-W, the recall,
precision, and F-measure can be calculated:

SKIP2(X,Y)

(3)

Rskin = (68)

6.2. USING ROUGE AS A SCORING FUNCTION FOR TBL 49

SKIP2(X,Y
PskipZ = (n)() (69)
2
1 2 Rs % Ps %,
Fskip2 = (i /8) fip2 " ship2 (610)

Rskin + ﬂQPskin

where SKTP2(X,Y) is the number of skip-bigram matches between the
reference compression X with length m and the candidate compression Y
with length n. As expected, ROUGE-S is defined to be Fyipo.

With g = 1, the scores of the candidate are respectively 0.5, 0.167, and
0.333. So, C1 is better than C2 and C3, C3 is better than C2. As we can
see in this example, ROUGE-S solves one of the problems with both LCS-
based measures - although C2 and C3 both have the same LCS, but €8 has
a better ROUGE-S score because it takes all bigrams that are in-order into
account.

If the gap in a skip-bigram is unbounded, it may result in spurious skip-
bigrams such as “the the”. This can be solved to some extend by specifying
the maximal size of a gap. For instance, a gap of 0 would result in normal
bigrams, a gap of 4 would allow for four words to exist between a skip-
bigram. Of course, the denominator should of the recall and precision should
be changed to the maximum number of skip bigrams (as the combination as
used above computes the number of skip bigrams when any gap is allowed).

6.1.6 ROUGE-SU

On potential problem with ROUGE-S is that it does not give any value
to candidate compressions without matching skip-bigrams, even if many
words are shared. For example the compression “gunman the killed police”
fully matches on unigrams with the reference compression from the previous
section, because it is just the inverse sentence, but it does not have any
matching skip-bigrams.

ROUGE-SU still gives credit to such cases by also counting matching
unigrams. The same effect can be achieved by left-padding the reference
and candidate compressions by an additional marker word, which causes
the marker plus every word to be a skip-bigram.

6.2 Using ROUGE as a scoring function for TBL

As described in section 5, a method to compare compressions generated
by candidate rules with the reference headline is required. Such method
requires three characteristics:

1. A method should take good word overlap into account. This avoids
that rules that often delete important words or constituents get good
scores.

50 CHAPTER 6. METHODOLOGY FOR EVALUATION

2. A method should be sensitive to the word order. If two candidates
have the same words, but one of the candidates has a word order that
resembles the reference headline more closely, it should get a higher
score.

3. A method should take the differences in length into account. A rule
that removes unimportant words that do not occur in the reference
sentence should get rewarded.

None of these characteristics require a method that compares the parse
trees. It was decided to use a word-level measure, because comparing parse
trees can give unnecessary complications. For example, the parse tree of
short reference headlines often differs highly from the parse tree of the first
sentence. Besides that, most transformations do not take the correctness of
the resulting trees into account. It may be useful in the future to check the
trees generated by transformations against a grammar. But, for now it was
decided to use one of the ROUGE measures for compression comparison.

All the ROUGE measures have the third characteristic, since they em-
body the precision and recall, all measures are normalized over the length
of a sentence or an aggregate thereof. With regard to this characteristic, all
of the ROUGE measures are potential candidates.

ROUGE-N does confirm to the first characteristic as well, at least if
N is small (preferably 1). If N is larger, both sentences may share many
words, but if their order is different, there may not be many similar n-
grams. Although ROUGE-N does conform to the first characteristic, for a
small N, it only possesses the second characteristic weakly. For instance,
ROUGE-2 gives higher scores if the order of words is comparable, but does
not account for all non-consecutive in-order matches (for instance, consider
the example given in section 6.1.3).

ROUGE-L and ROUGE-W have the second characteristic, they are very
sensitive to word orders. However, as previously mentioned, it gives little
or no points when the word order differs highly, but a compression still has
many correct words. Additionally, it only takes the longest subsequence into
account. As such, it is a bad candidate for scoring in the learning cycle, it
is not sensitive to many changes that are improvements.

The remaining candidates, ROUGE-S, and ROUGE-SU have all required
characteristics: more overlap in skip-bigrams is found when the word order
is comparable. While ROUGE-S takes word overlap in account fairly well
(like ROUGE-N where N is 2), it does not do this as well as ROUGE-1.
If words happen to have different orders in both sentences, there may be
little skip-bigram overlap. ROUGE-SU solves this, by practically including
unigrams in the ROUGE-S measure. Since ROUGE-SU is sensitive to both
word overlap and word order, it seems to be the most fit candidate for
sentence comparison during learning cycles.

6.3. USING ROUGE FOR EVALUATION 51

6.3 Using ROUGE for evaluation

ROUGE was also used to perform automatic evaluation of the headlines
generated from the test set. Ideally, the evaluation measure should have the
same characteristics as those outlined in the previous section. However, it
would not be fair to use exactly the same measure, since the generated rules
may have a bias to generating headlines that have a high ROUGE-SU score.

To measure the word order, the ROUGE-L measure is used. However, it
would be useful to capture unigram overlap as well, since the trimmer may
have kept the correct words, even if their order is mostly different. For this
reason, ROUGE-L is accompanied by the unigram precision of word roots
in the machine evaluation.

52

CHAPTER 6. METHODOLOGY FOR EVALUATION

Chapter 7

Implementation details

7.1 Speeding up learning

If the learning algorithm is literally implemented as described in section 5.5,
a lot of unnecessary work is done. Since most rules only affect a (small)
subset of all sentences, it is not necessary to generate rules over all trees
during every learning cycle.

To avoid these inefficiencies, various optimizations were used for the
learning cycle, that are described in the pseudocode shown in program listing
2. During each learning cycle a list of indexes of trees that were changed
during the previous cycle should be available. To bootstrap the learning,
the set of changed indexes is initialized to the set of all tree indexes, and
the rule/index score map is empty.

This algorithm is shares some similarities with the TBL algorithm de-
scribed by Ngai and Florian[10], in that it does not regenerate the list of
rules during each cycle, but keeps track of the rules and trees that are po-
tentially affected by a cycle, keeping the need to regenerate and rescore rules
to a minimum.

7.2 Handling of Alpino parse trees

As described in chapter 5 the system uses the Alpino XML format for parse
trees. While common class libraries, such as the Java class library, provide
functionality to represent XML files as DOM! trees, DOM trees may not be
the ideal tree representation. The primary problem with DOM is its mem-
ory overhead, which should be avoided when potentially loading thousands
of trees. For this reason, the system reads Alpino trees using the DOM
API, but instantly converts them to an internal tree representation. This
internal tree format stores every attribute found for nodes in the Alpino
trees as attributes in a map that is associated with a tree node, except for

"Document Object Model

53

54 CHAPTER 7. IMPLEMENTATION DETAILS

the primary attributes that are used in every node: the begin/end positions
and the node ID. Except for references to children, nodes should also have
a reference to their parent, to simplify the writing of conditions.

A task that often needs to be performed is to extract the actual sentence
that is represented by a dependency tree, or the roots of the words that
form the sentence. It’s not enough to gather nodes in a left to right order,
since the tree order may not correspond to the actual sentence word order.
Fortunately, all nodes have indications of their positions through their begin
and end attributes. So, retrieve a sentence, we first select all nodes that have
a word attribute, and store them in a list. Then we sort this list on the begin
attribute. The leaf nodes are then ordered in the sentence word order, so
all words can then be extracted from the nodes and put in an array that
represents the sentence words. The same procedure can be used for word
root, by using the root attribute in place of the word attribute.

7.2. HANDLING OF ALPINO PARSE TREES 95

Listing 2 Learning cycle algorithm pseudo-code
// ’rules’ and ’changedIndexes are carried over from the
// previous learning cycle.
for (i in changedTreeIndexes) {
treeRules = gatherTreeRules (dummyCorpus[i]);
rules[rule] [i] = O;

3

// Find the scores of rules for trees at changedTreelndexes.
scoreRules(goldCorpus, dummyCorpus, rules, changedTreelndexes);

// Find the rule with the highest summed score, and store it.
bestRule = findBestRule(rules);
results += bestRule;

// Apply the rule. We only need to apply it to trees that
// we know the rule applies to.
applyRule (dummyCorpus, bestRule, rules[bestRule].keys());

// Store the changed indices for the next cycle.
changedTreeIndexes = rules[bestRule].keys();

// Purge sentences that have a sufficient length. We

// can do this by discarding their indexes from the

// changedTreeIndexes set: only trees affected by this

// cycle can reach a sufficient length during this cycle,

// and during the next step we will purge all rule score

// entries for the changedIndexes. As a result these trees

// will never be analyzed again.

changedTreeIndexes = purgeSentences(goldCorpus, dummyCorpus,
changedTreelIndexes) ;

// Purge the rule scores for the changed indexes, a rule may
// not affect one of the changed trees during the next cycle.
purgeScores(rules, changedIndexes);

56

CHAPTER 7. IMPLEMENTATION DETAILS

Chapter 8

Results

The system described in this thesis was evaluated with the News2002 corpus
that is described in chapter 4. This corpus consists of 7233 headline/sentence
pairs that were extracted from the Dutch AD, NRC, Parool, Trouw, and
Volkskrant newspapers from 2002. The first 90% of the corpus was used as
training material, the remaining 10% as a test set. During the development
a subset of the first 90% was used for training and testing the system.

For the evaluation of the system, the system was trained on two sets of
rule templates: the rule templates that mirror the rules used in the hedge
trimmer (HT-Like), and the same set with the addition of some extra rule
templates as described in chapter 5 (Extended).

Two evaluations were performed: both machine evaluation and evalua-
tion by human judges.

8.1 Machine evaluation

For the machine evaluation of the trimmer with these rule templates, the
ROUGE-L measure is used, as motivated in section 6.3. Additionally, the
(unigram) word root precisions were also calculated.

This evaluation was performed by applying the rules to the test corpus.
Headline candidates that have reached the same length as the reference
sentence are excluded from further trimming (otherwise it would be difficult
to evaluate the compressions, as set forth in 5.5). The trimming concludes
when all rules have been applied or when all sentences have been trimmed
to the length of their reference sentences!

The type of evaluation performed here may seem a bit problematic,
because the target length is hinted to the trimmer. Other trimmers, such as
the hedge-trimmer have been evaluated with a similar task, such as the 10-
word summarization task of the DUC2003 conference?. The general idea is

'In practice, ‘rule starvation’ occurs earlier.
http://duc.nist.gov/duc2003 /tasks.html

o7

o8 CHAPTER 8. RESULTS

to test the quality of the headline when it is trimmed to a prespecified length
(e.g. 10-words for this DUC2003 task). But since no such task is available
for Dutch, the approach described above simulates this with varying lengths.
This was one of the motivations to perform a human evaluation as well.

The result of this evaluation are shown in table 8.1. The scores for
the uncompressed headline are also shown in the Sentence column. Since
there is no good baseline yet to compare this system with, this shows the
improvement over the untrimmed sentence.

Table 8.1: Average ROUGE-L score and unigram precision for the uncom-
pressed sentences, the hedge trimmer-like trimmer, and the extended trim-
mer.

Sentence HT-like Extended
ROUGE-L 0.324 (0.183) | 0.434 (0.288) | 0.439 (0.200)
Unigram precision | 0.272 (0.158) | 0.505 (0.310) | 0.511 (0.309)

As the results show, a clear improvement over the uncompressed sentence
is shown. There only seem to be very minor ROUGE-L score and unigram
precision differences between the HT-like and Extended trimmers, with a
slight edge for the extended trimmer.

Given the circumstances, the scores seem fair, since there are three fac-
tors that push ROUGE-L scores down:

1. Often, the trimmer will come up with slightly different, or even com-
pletely different headlines, that are also correct or only slightly worse.

2. ROUGE-L only takes the longest subsequence into account. If the
original sentence has a different word order than the reference headline,
often the generated headline is also fine, it just had a (partly) different
word order.

3. After all rules are applied, the generated headlines are sometimes still
longer than the reference headlines. There are many short headlines
in the training and test sets, and it is hard to get to such short lengths
without making overly aggressive rules.

Given the unigram precisions, the first and third factors are likely causes
for ROUGE-L score degradation, besides incorrect trimming. The third
factor could be confirmed by looking at the number of headlines that were
still longer than their reference candidate during the machine evaluation.
After application of the HT-like and Extended rules, 44.5% and 44% of the
headlines were longer than the reference headlines respectively.

Given these possible distortions of the results, it was also appropriate to
conduct an evaluation with human judges.

8.2. HUMAN EVALUATION 59

8.2 Human evaluation

For the human evaluation, 50 sentences were chosen randomly from the
test corpus. These sentences were trimmed to a target length of 8 words,
meaning that headlines that have reached this length are removed from
further trimming. This length was chosen because it seems to be a fair
length for headlines, and usually leads to a compression of around 50% of the
original sentence (depending on the sentences that the computer randomly
selected). Comparable compressions rates are used for the evaluation of
other systems.

The two judges were given the original sentence and the headlines gen-
erated by the HT-like and Extended rules, and were asked to rate each
sentence on a scale from 1 (bad) to 5 (excellent) for grammaticality and
relevance. Table 8.2 shows the average scores and their standard deviations
retrieved from this evaluation.

Table 8.2: Human judgements of the hedge trimmer-like and extended trim-
mers.

HT-like Extended
Grammaticality | 3.85 (1.03) | 3.75 (1.05)
Relevance 3.82 (1.13) | 3.76 (1.14)

Somewhat surprisingly, the rules generated with the extended set of tem-
plates perform worse than the rules generated with the templates that mir-
ror the hedge trimmer. While the differences are small, and it is hard to
distinguish consistent differences between the HL-Like and extended head-
lines, the Extended headlines seem to be a bit more aggressive in deleting
nouns and proper nouns. The two categories of deletion templates in the
Extended rule templates are generally less specific than the HL-like tem-
plates. Though, the Extended set may perform better for generating very
short (i.e. two or three word) headlines. This may also give the edge to
the Extended set in the ROUGE-L evaluation, since the machine evaluation
includes many short headlines as well.

These results cannot be compared directly to the results of the human
evaluation of the hedge trimmer (as summarized in section 2.2), since the
evaluation of the hedge trimmer does not separate grammaticality and rele-
vance, and ideally the systems should be compared by the same judges. Still,
it is shows that this system performs about as well as the hedge trimmer.
The average of the grammaticality and the relevance of the HT-like rule set
is 3.84, compared to 3.72 for the hedge trimmer.

Compared to the noisy-channel model, as described in section 2.1, this
system generates headlines that are less grammatical, but it is better at ex-
tracting important fragments. This may not be surprising: the noisy-channel

60 CHAPTER 8. RESULTS

model uses PCFG probabilities to weight every compression. As a result it
is very able at producing grammatical sentences. However, preference to
grammaticality may prevent removal of unimportant phrases. Additionally,
headlines are often not strictly grammatical.

Given the difficulties inherent to the data set, compared to the data sets
that were used for training and testing most English trimmers?, it seems that
a trimmer based on transformation-based learning is well able to capture
rules that are comparable to those of the hedge trimmer. Additionally, due
to the generic nature of rule templates, it’s easier to capture more specific
rules. The fact that Alpino provides information about dependency relations
helps with generating very specific rules as well.

8.3 Examples of trimming problems

In this section, a few typical problems that are found during trimming are
discussed.

8.3.1 Verb inflection

One typical problem is the ungrammaticality caused by trimming where
past participles are involved. For instance, consider the following sentence
and the proposed headline:

S: De Amerikaanse wielrenner Tyler Hamilton heeft zondag bij
een training voor de GP Eddy Merckx een sleutelbeen
gebroken .

(The American cyclist Tyler Hamilton has Sunday at a
training for the GP Eddy Merckx a clavicle broken .)

H: wielrenner Tyler Hamilton sleutelbeen gebroken
(cyclist Tyler Hamilton clavicle broken)

Since the auxiliary verb ‘heeft’ (‘have’) is removed, the inflection of the
verb ‘gebroken’ (‘broken’) should change and take the place of the auxiliary
verb.

A rule type that performs such a modification was written and tested,
and it generally seems to work. The problem is that it is very language-
specific and sacrifices the generality of the system, and would practically be
closer to manual rule creation than machine learning. Additionally, it turned
out to require very specific tuning - a rule that removes all verbs with the
root ‘heb’ (‘have’) normally has a higher score, so a rule that modifies verbs
in this manner requires additional boosting.

3 As described in chapter 4, the headline words do not necessarily have the same order
as the uncompressed sentence in the News2002 corpus.

8.3. EXAMPLES OF TRIMMING PROBLEMS 61

8.3.2 Non-salient sentences

As previous research has shown, usually the first sentence contains the ma-
jority of useful headline words. However, sometimes the first sentence is just
a lead in. Consider for example the sentence “Engels spreken ze nauwelijks
- en anders zouden ze nog altijd weinig zeggen: Jonsi , Kjarri , Oggi en Orri
van het schuwe, IJslandse Sigur Rés.” (literal: “English speak they barely
- and otherwise should they even always little say: Jonsi, Kjarri, Oggi and
Orri of the shy, Icelandic Sigur Rés”). The first sentence is a characteriza-
tion of the band members of Sigur Rés, as an introduction to an article. It’s
difficult to extract relevant words from such a sentence. A possible headline
based on this sentence could just be “Sigur Ros”. However, if the system
is asked to create a headline of around eight words, it’s hard to come up
with a fitting headline. With both rulesets, the following headline is gener-
ated: “Jonsi Kjarri Oggi en Orri schuwe IJslandse Sigur Rés” (literal: “Jonsi
Kjarri Oggi and Orri shy Icelandic Sigur R6s”). While proper names are
usually important words, here it creates a meaningless headline.

8.3.3 Insufficient trimming

Sometimes, the trimmer does sensibly cut off some material, with the result
that the remaining sentence is ungrammatical and incomplete, where addi-
tional trimming would have corrected this ungrammaticality. For instance,
consider the following example of a sentence and a proposed headline:

S: Voorzitter en penningmeester Gerrit Bloemink van FC Utrecht
stapt op per 1 oktober.
(Chairman and treasurer Gerrit Bloemink of FC Utrecht
quits starting 1 October.)
H: en penningmeester Gerrit Bloemink stapt op per
(and treasurer Gerrit Bloemink quits starting)

(Note that ‘stap op’ is an inflection of the verb ‘opstappen’, which means
‘to leave’ or ‘to quit’, for convenience this was translated with one word.)
The generated headline is flawed, the noun ‘Voorzitter’ was deleted, leaving
only partial information about ‘Gerrit Bloemink’. ‘FC Utrecht’, is also a
crucial name in this sentence, is removed too. A more useful deletion that
took place was the removal of the time expression ‘1 oktober’. However, the
deletion kept the dangling word ‘per’. Subsequent deletions would probably
have removed this word, but the threshold for the trimming was reached,
leaving the headline as-is. In contrast to e.g. the noisy channel model, this
system does have no way to determine whether another deletion is useful.
This is an inherent weakness that systems that can verify or estimate the
grammatical correctness of a sentence do not have.

4FC Utrecht is a Dutch soccer club.

62 CHAPTER 8. RESULTS

One possibility to work around this problem is to check headline candi-
dates that have a length that is near the target length using a parser. The
candidate that proves to be the most grammatical could then be selected
as the candidate headline, even if it is longer or shorter than the reference
length.

Chapter 9

Conclusions

9.1 Overview of the results

In this thesis I have attempted to apply transformation-based learning to the
task of sentence compression and headline generation in particular. Analo-
gous to transformation-based learning in other tasks, such as part-of-speech
tagging, the TBL system that was developed generates understandable rules
that reflect linguistic insights. A clear advantage over most other rule-based
systems is that this does not require the manual work that is normally in-
volved in writing rules that are bound to a specific language and parser.

The system developed for this thesis can relatively easily be modified by
adding a reader class for the specific parse tree format that a parser produces,
and modifying rule templates to use the attributes that are assigned to nodes
by that specific parser. The learning cycle and condition/action classes are
independent of the parser or language that is used. As such, the system can
compete with systems that rely on statistical techniques. Arguably, even less
parser-specific information is required, because this system does not require
PCFG probabilities.

Of course, a system for transformation-based learning still needs to be
seeded with rule templates to learn actual rules. Since the parse trees that
are produced by the Alpino parser and grammar are quite different from
those produced by the BBN parser that is used by the hedge trimmer, those
rules can not be used directly (of course, this would also sacrifice the generic
nature of a TBL system). Still, the linguistic motivations for the hedge
trimmer are sound, so I have tried to capture the rules in more abstract
rule templates. As the results indicate, this generates a rule set that is
well-equipped to perform trimming tasks.

An additional problem that has been dealt with was the lack of train-
ing material for the generation of Dutch headlines. In this thesis I have
described a method for automatic extraction of training material from a
Dutch newspaper corpus. While the training data is relatively fuzzy, since

63

64 CHAPTER 9. CONCLUSIONS

the word order of the headlines does not correspond with the word order of
the first sentence of an article, and there is an overwhelming amount of very
short headlines, the corpus prove to be useful for training and testing the
system. In the future, it would be interesting to see how the performance of
the system increases when less fuzzy material is available and used.

9.2 Possible improvements

In retrospect, it’s probably worth making deletion actions less destructive.
Currently, the system removes nodes in the candidate headlines during the
learning and trimming phases, e.g. when a DeleteAction is applied. In this
respect, the system differs from traditional TBL systems, that only apply
transformations. A different approach that could be tried is seeing deletion
as setting a on/off flag on a node. If a node is flagged as ‘off’, the subtree
should not be used in the candidate headline. This would allow for rules
that can re-enable nodes in more specific contexts. For example, a rule could
disable words with the root ‘heb’ (‘have’), but re-enable it through rules that
have a more specific context. Of course, if such a deletion policy would be
implemented, it needs to be decided what should be done with actions that
change the structure of the tree (e.g. for ReplaceParentAction instances).

Another problem that would still be interesting to solve is verb inflec-
tion. Especially the placement and inflection of past participles needs to be
corrected (as discussed in section 8.3.1). While it is relatively easy to create
a language and parse tree-specific rule, this is not very elegant in the context
of a TBL system, and a more generic approach would be appropriate.

Finally, the grammaticality of headlines could be improved by adding
verification. If the parser that is used to generate sentence parse trees can
assign probabilities to parses, the probabilities of headlines with lengths
around the headline length threshold could be estimated during trimming.
Consequently, the most probable headline could be chosen. It seems less
useful to use such probabilities during the learning phase. Often it is not
harmful to make a headline ungrammatical by applying a rule, if a sub-
sequent rule also removes the remaining fragments that make a sentence
ungrammatical. Application of probabilities during the trimming process
can solve the problem described in section 8.3.3.

9.3 Final remarks

I sincerely hope that the system and methodology set forth in this thesis
will prove to be useful. At the very least, it seems promising enough as a
generalization of the hedge trimmer and an application of TBL for the task
set forth in this thesis. Due to its generic design, the system described in

9.3. FINAL REMARKS 65

this thesis can easily be expanded for further research. Hopefully, this can
provide further insights in the process of sentence compression.

66

CHAPTER 9. CONCLUSIONS

Bibliography

1]

[5]

Chin-Yew Lin. Rouge: A package for automatic evaluation of sum-
maries. In Marie-Francine Moens Stan Szpakow-icz, editor, Text Sum-
marization Branches Out: Proceedings of the ACL-04 Workshop. Asso-
ciation for Computational Linguistics, 2004.

Ryan Mcdonald. Discriminative sentence compression with soft syntac-
tic constraints. In In Proceedings of the 11th FACL, 2006.

Kevin Knight and Daniel Marcu. Summarization beyond sentence ex-
traction: A probabilistic approach to sentence compression. Artif. In-
tell., 139(1):91-107, 2002.

John M Conroy, Judith D Schlesinger, Dianne P OLeary, and J Gold-
stein. Back to basics: Classy 2006. In In Proceedings of the 2006 Doc-
ument Understanding Conference (DUC 2006) at HLT/NAACL 2006,
2006.

Yuya Unno, Takashi Ninomiya, Yusuke Miyao, and Jun’ichi Tsujii.
Trimming cfg parse trees for sentence compression using machine learn-
ing approaches. In Proceedings of the COLING/ACL on Main con-
ference poster sessions, pages 850-857, Morristown, NJ, USA, 2006.
Association for Computational Linguistics.

B. Dorr, D. Zajic, and R. Schwartz. Hedge trimmer: A parse-and-trim
approach to headline generation, 2003.

Noam Chomsky. Lectures on Government and Binding. Foris, Dor-
drecht, 1981.

Eric David Brill. A corpus-based approach to language learning. PhD
thesis, University of Pennsylvania, Philadelphia, PA, USA, 1993.

K. Papineni, S. Roukos, T. Ward, and W. Zhu. Bleu: a method for
automatic evaluation of machine translation, 2001.

Grace Ngai and Radu Florian. Transformation-based learning in the
fast lane. In NAACL ’01: Second meeting of the North American Chap-

67

68

BIBLIOGRAPHY

ter of the Association for Computational Linguistics on Language tech-
nologies 2001, pages 1-8, Morristown, NJ, USA, 2001. Association for
Computational Linguistics.

