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Abstract
The task of emotion classification has traditionally been addressed using two different but comple-
mentary approaches: lexicon-based approaches typically have a wider coverage of emotion-bearing
words whereas corpus-based approaches learn to use contextual cues. It should not come as a
surprise that these methods have been used jointly to exploit the strengths of both.

However, a combination of the two techniques still suffers from the relatively limited size
of the available linguistic resources. In this work, we introduce a novel variant of the Label
Propagation algorithm (Zhu and Ghahramani 2002) to extend the coverage of an existing emotion
lexicon. In order to do so, we construct a fully connected graph wherein words are vertices
and the edges are weighted by the geometric proximity of distributional word representations.
The vertices that correspond to words that occur in an emotion lexicon are initialised using the
emotion distribution indicated in the lexicon. Then, the label propagation algorithm is used to
derive emotion distributions for words that do not occur in the lexicon. Finally, we propose
batched label propagation: an optimisation procedure which makes expansion tractable for large
vocabularies.

In our experiments, we compare four emotion classifiers: the model of Mohammad and Kir-
itchenko (2015); a bidirectional LSTM model; a bidirectional LSTM model using an emotion
lexicon; a bidirectional LSTM model using the extended emotion lexicon derived through label
propagation. Our results show that the classifier that uses the expanded emotion lexicon outper-
forms the other models on the two deployed emotion classification benchmarks.

1. Introduction

On online platforms, users express their opinions and share their experiences, thus they generate
a complex network of mutual influence. Reviews of goods and services, political views and com-
mentaries, as well as recommendations of job applicants exemplify how Web content can impact the
decision-making process of consumers, voters, companies, and other organisations (Pang et al. 2008).
Users’ opinions have been classified with regard to, among other aspects, the polarity of the sentiment
they express and to the basic emotions they evoke.

In the field of polarity annotation there exist two main approaches to automatically extract
sentiment: corpus-based and lexicon-based. The same dichotomy exists for the detection of affectual
orientation in text. The corpus-based approach frames emotion analysis as a supervised classification
task and requires emotion-annotated corpora. Supervised emotion classifiers are typically context-
dependent, so they tend to perform well in the domain of the training corpus but they can be
mediocre when tested on other domains. The lexicon-based approach considers the orientation of
single words and phrases in the document. As well as the inherent context independence (Taboada
et al. 2011), which negatively affects precision, another important limitation of this approach is the
small size of the available lexical resources. We propose a new reproducible method for emotion
lexicon expansion that directly addresses the second shortcoming and can be leveraged to improve
the overall performance of an emotion classifier.
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In the proposed framework, emotion-specific word embeddings are learned from a corpus using
an LSTM neural network. Each text in the corpus is labelled with six basic emotions (anger, disgust,
fear, joy, sadness, and surprise). Then, the derived vector space model is used to expand an existing
emotion lexicon via a novel variant of the semi-supervised Label Propagation algorithm (Zhu and
Ghahramani 2002) which is tailored to distributed word representations. Finally, batch gradient
descent is proposed as a way to accelerate the optimisation of label propagation and to make it
feasible for large graphs (i.e. for large vocabularies). Our method requires two types of resources:
an emotion-labelled corpus and an emotion lexicon. We use, respectively, the Hashtag Emotion
Corpus (Mohammad and Kiritchenko 2015), a collection of tweets labelled with Ekman’s six basic
emotions (Ekman 1992), and the NRC Emotion Lexicon (Mohammad and Turney 2013).

The rest of this paper is structured as follows. We begin in Section 2 with a review of related work
in the areas of emotion classification and lexicon expansion. Then, the proposed lexicon expansion
method and the optimisation of specialised word embeddings are introduced (Section 3). Section
4 presents an analysis of the employed linguistic resources. The experiments performed to learn
emotion-specific embeddings and to expand the lexicon are reported in Section 5 along with our
intrinsic and extrinsic evaluation in an emotion classification task (Section 6). Section 7 concludes
and proposes new research ideas.

The software related to this paper is open-source and available at github.com/Procope/emo2vec.

2. Background

2.1 Emotion classification

Sentiment analysis refers to the automatic detection of a user’s affective attitude toward a topic.
More commonly, the goal of the field is considered to be that of determining the polarity of phrases,
sentences, and documents. This is often referred to as polarity or valence annotation, that is the
classification of pieces of text as positive, negative, or neutral. It is common to extend the number
of valence classes to at least five; this finer-grained analysis also typically includes very positive and
very negative in the unidimensional polarity scale. In contrast, emotion classification consists of
assigning pieces of text to one or more classes of emotions; its goal is to gain in interpretative and
explanatory power by increasing the number of dimensions used to represent affectual orientation.

The inter-annotator agreement studies conducted by Strapparava and Mihalcea (2007) for the
SemEval headlines corpus established a human-level upper bound to the accuracy of emotion clas-
sification algorithms. Table 1 shows the agreement scores in terms of Pearson correlation, as they
can be found in the original paper. If trained annotators agree with a simple average r of 53 (the
frequency-based average r is 43), it is plausible that untrained respondents would show an even
lower level of agreement. An attempt to answer this question empirically can be found in Section
6.2, which describes the results of a survey that tests human ability to classify short paragraphs into
emotions.

The remainder of this section describes the two approaches that are traditionally used to address
the task of emotion classification—lexicon-based and corpus-based—and discusses possible ways of

anger disgust fear joy sadness surprise
50 45 64 60 68 36

simple average frequency-based average
53 43

Table 1: Class-based and average Pearson correlation as a measure of inter-annotator agreement on
the SemEval-2007 Affective Text Corpus (Strapparava and Mihalcea 2007).
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combining their strengths. A comprehensive list of challenges for the analysis of affective text is
presented by Mohammad (2015) and it includes e.g. subjective and cross-cultural differences.

Lexicon-based methods An important milestone for emotion analysis was the SemEval-2007
Affective Text task. The motivation for the task was that there seems to be a connection between
lexical semantics and the way we verbally express emotions (Strapparava and Mihalcea 2007). In
particular, it was argued that the emotional orientation and strength of a text (i.e. which emotion
the text conveys and how intensely) are determined potentially by all words that compose the text,
though, disputably, in uneven amount. In order to obtain a wide coverage of emotion-bearing words,
lexicon-based methods make use of emotion dictionaries. An example of a lexicon-based method
is UPAR7, a system that participated in the SemEval-2007 Affective Text task. UPAR7 parses
documents and then uses the resulting dependency graphs to reconstruct what is said about the
main subjects. All words in a document have emotion scores which are based on SentiWordNet
(Esuli and Sebastiani 2007) and WordNet Affect (Strapparava et al. 2004) and are enriched with
lexical contrast and accentuation. A higher weight is given to the score of the main subject, while
the other weights are computed considering linguistic features such as negations and modal verbs.
In this way, expressions that appear to be neutral can also convey affective meaning as they might
be semantically related to emotional concepts.

To understand why the latter is an important property of an emotion analysis method, consider
the following tweets:

(1) I want cake. I bet we don’t have any.

(2) Saddened by the terrifying events in Virginia.

Although the literal meaning of (1) appears to be rather neutral, this utterance expresses a sense
of frustration, which in terms of basic emotions could be translated with the labels anger and / or
sadness. Conversely, (2) explicitly expresses affectual orientation yet the NRC Emotion Lexicon does
not contain sadden, saddened nor terrify, terrifying. The claim that all words potentially convey
affective meaning is inspirational for our work and it provides a rationale for lexicon expansion
(Section 2.2 and 3.2). In Section 4 we present the Hashtag Emotion Corpus and the NRC Emotion
Lexicon and use them to further argue that available lexical resources are limited if we assume that
possibly all terms in a document contribute to its affective content.

A second drawback of the lexicon-based approach is again related to the labelled dictionaries
used to calculate the emotional orientation of a text based on the words and phrases that constitute
it. Dictionaries are static resources and they cannot differentiate between direct affective words, i.e.
words that refer directly to affective states, and indirect affective words, which only have a weak
connection to emotional concepts. To correctly assign labels to indirect affective words detailed,
dynamic contextual information is required. To give an example, an American professional baseball
player, who was criticised for his unsatisfactory performance, publicly stated:

(3) I am going to have a monster year.

The indirect affective word monster is used as a positive modifier but world knowledge is required
to make such an inference.

Finally, consider the following headline:

(4) Beating poverty in a small way.

Its affect is rather positive yet the headline contains the direct affective words beating and poverty,
which are labelled as expressions of anger, disgust, fear, and sadness in the NRC Emotion Lexicon
(Section 4). Sentence (4) is an example of how lexicon-based methods cannot correctly analyse
compositionality (beating poverty). Negations and sarcasm are other such issues, which can only be
solved using methods that do not treat sentences as bags of words.
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Corpus-based methods The automatic extraction of affectual orientation can also be viewed as
a supervised classification problem, which requires an emotion-annotated data set and a statistical
learning algorithm. This is often referred to as the corpus-based approach (Pang et al. 2002). In the
area of corpus-based methods, researchers have proposed different systems that, having access to
contextual information, have the potential to address the issues of lexicon-based techniques, such as
basic compositionality—including, crucially, negation—and cases of obvious sarcasm (Strapparava
and Mihalcea 2007, Mohammad and Kiritchenko 2015).

A joint approach There exist as well combinations of the two main approaches. Strapparava and
Mihalcea (2008) use lexical resources (WordNet Affect) to annotate synsets representing emotions
and moods: for each emotion, a list of words is generated by the corresponding synset. On the other
hand, a vector space model of the British National Corpus is obtained using Latent Semantic Analysis
(LSA). Not only words, but also documents and synsets are represented as vectors; the latter two
are mapped into the vector space by computing the sum over the normalised LSA vectors of all the
words comprised in them. Once an emotion is represented in the LSA vector space, determining
affective orientation is essentially a matter of computing a similarity measure between an input word,
paragraph, or text, and the prototypical emotion vectors. This was the best performing system at
SemEval-2007, suggesting that dictionaries and corpora are complementary sources of information.

Indeed, further studies (Kennedy and Inkpen 2006, Andreevskaia and Bergler 2008, Qiu et al.
2009) showed that the performance of lexicon- and corpus-based approaches is complementary in
terms of precision and recall. The lexicon-based method yields higher recall at the cost of low
precision. Due to its static coverage of emotion-bearing words, a lexicon-based method is likely to
tag an instance with a label e whenever an emotion word related to e is found, even though the text
is neutral or evocative of another emotion. In contrast, supervised learning systems tend to perform
poorly in terms of recall since their vocabulary is limited to the types seen in the training data and
they lack an explicit indication of which affective orientation is conveyed by specific words. They
reach, however, higher precision scores as they learn to use contextual cues (Yang et al. 2015).

2.2 Lexicon expansion and semi-supervised learning

The task of expanding a lexicon can be solved using a variety of methods. Self-training is likely
the simplest approach. It consists of (i) labelling a subset of the vocabulary based on the few
lexicon words, and (ii) using the newly labelled lemmas to incrementally classify larger portions of
the lexicon. The drawback of self-training is that, since dictionaries are typically not very large,
the first rounds of classification perform poorly thereby propagating severe, early errors throughout
iterations.

An alternative method is transductive inference (Vapnik and Vapnik 1998). In contrast with
inductive, fully supervised algorithms, which only exploit the labelled portion of the data, transduc-
tive inference takes the structure of the entire dataset into account. This evidently suits the lexicon
expansion task, where only a minority of the words are labelled with emotion tags and the underlying
structure of the vocabulary in feature space can be relevant to determine the emotional orientation
of an unlabelled word. In particular, transductive SVMs (TSVMs) have been successfully used for
text classification but they have a crucial pitfall: the TSVM optimisation problem is combinatorial.
Although Joachims (1999) proposed an algorithm that finds an approximative solution using local
search, in order to keep the optimisation problem tractable the size of test sets must not exceed
10,000–15,000 instances. Section 4 explains why this is an important limitation. An additional
downside is that a TSVM accepts input in the form of sparse descriptors rather than dense vectors.

A more linguistically inclined approach is to compute the semantic orientation of words based
on the PMI between tokens and emotion words—or, on Twitter, emoticons (Zhou et al. 2014). This
method has been used to expand a lexicon for context-dependent polarity annotation.

The problem of lexicon expansion can also be conceived as a supervised classification task, where
the words in the dictionary are used as training data. Bravo-Marquez et al. (2016) recently de-
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ployed a corpus of ten million tweets (Petrovic et al. 2010) and a multi-label classifier to expand the
NRC Emotion Lexicon. The proposed classifiers, Binary Relevance, Classifier Chains and Bayesian
Classifier Chains, use Skip-gram embeddings as word descriptors. They are all based on word-level
features which can be extracted from the Skip-gram model, or the word-centroid model. Although
the word-centroid model draws information from multiple features—word unigrams, Brown clusters,
POS n-grams, and Distant Polarity— word embeddings learned via the Skip-gram model were shown
to significantly outperform word-centroid features at improving classification performance. These
results suggest that statistical regularities in language corpora allow distributional word representa-
tions to encode affect. Yet the disproportion between lexicon words and unseen types suggests that
distributional word representations could be better leveraged if they were not deployed in isolation.
Semi-supervised approaches can take into account word representations as well as their relative se-
mantic similarity, thus they seem to more naturally fit the problem of expanding a limited lexicon
to a majority of unlabelled words.

A semi-supervised alternative to multi-label classification is Label Propagation, an iterative al-
gorithm that propagates labels from labelled to unlabelled data by finding high density areas (Zhu
and Ghahramani 2002). All words, labelled and unlabelled, are defined as nodes. The edge between
two nodes u, v is weighted by a function of the proximity of u and v so that words that are close
in the semantic space are linked by strong edges. Furthermore, all nodes are assigned a probabil-
ity distribution over labels. At each iteration, labels propagate through the graph and probability
mass is redistributed following a crucial principle: labels propagate faster through strongly weighted
edges. An important advantage of LP is that it can be solved without iterations by computing a
solution analytically. This technique appears to be the most appropriate for lexicon expansion as it
can leverage dense word embeddings, their inherent context-dependence, and geometric measures of
semantic similarities between words.

Task-specific word representations In the field of sentiment analysis, Tang et al. (2014) intro-
duced a method to learn sentiment-specific word embeddings from a large annotated corpus. The
proposed approach consists of extending an existing distributional embedding algorithm, the Col-
lobert and Weston (C&W) model (Collobert et al. 2011) and produces representations that tend to
enhance the predictive performance of supervised sentiment classifiers.

The algorithm combines two concurrent objectives: modelling the syntactic context of words
(with the C&W loss) and learning the polarity of words based on their affective sentential context:

losss (t, tr) = α losscw (t, tr) + (1− α) losss (t, tr) (1)

where t is a word n-gram from the corpus and tr is a corrupted n-gram derived by substituting the
centre word of t with a word drawn randomly from the vocabulary. The training objective of C&W
and the sentiment-specific training objective are both that the original n-grams obtain higher scores
than their corrupted versions by a margin of 1:

losscw (t, tr) = max (0, 1− fcw (t) + fcw (tr)) (2)

losss (t, tr) = max
(
0, 1− δs (t) f0s (t) + δs (tr) f1s (t)

)
(3)

where fcw (t) is the score of a 2-layer neural network, f0s (t) is the predicted positive score, f1s (t) is
the predicted negative score, s(t) is the gold sentiment distribution of an n-gram ([1,0] for positive
n-grams and [0,1] for negative ones), and δs is an indicator function such that:

δs (t) =

{
1 if s (t) = [1, 0]
−1 if s (t) = [0, 1]

Although this extension of the C&W model produces embeddings which are able to encode polarity
information, it demands very large annotated corpora. In a polarity classification task, a model
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trained on 1 million tweets yields an F1 score of 0.78, whereas a model trained on 12 million tweets
obtains an F1 score of 0.83 (Tang et al. 2014).

Yet there exist only few large annotated corpora. To our knowledge, the largest available emotion-
labelled data set is the Hashtag Emotion Corpus, which contains ca. 21,000 tweets. To overcome
this problem, Labutov and Lipson (2013) proposed a method that rearranges word representations
in their original vector space using a task-specific objective and without directly optimising word
embeddings. This alternative approach has multiple advantages: the task-specialisation process of
word embeddings is computationally more efficient, the size of the corpus need not be overly large,
and pre-trained generic word embeddings can be leveraged making it utilisable as a post-processing
step.

3. Methods

3.1 Emotion-specific word representations

To obtain word representations that encode affective orientation and strength, we fine-tune pre-
trained embeddings using an emotion classifier.

Model The inputs to our emotion classifier are paragraphs. The words in each paragraph are
mapped to their pre-trained representations by an embedding layer. The word vectors are fed to a
bidirectional LSTM, followed either by a softmax activation that outputs probability distributions
over emotion classes or by a sigmoid activation that produces one probability value for each class.
Batch normalisation precedes both the bidirectional LSTM layer and the output layer. In order to
obtain specialised representations, the pre-trained word vectors are used to populate the embedding
layer of the network and, once optimised, they can function as specialised representations. More
details about this encoder can be found in the Appendix.

Motivation for recurrent neural networks Traditional neural networks are not able to make
full use of sequential information as they act under the assumption that all inputs occur indepen-
dently of each other. In contrast, text is sequential in its nature and sentences are not successions
of words randomly drawn from a vocabulary; the use of a specific word is dependent on the context
of that word.

Recurrent Neural Networks (RNNs) address the issue of sequentiality as they have the potential
to represent arbitrarily long context. Nonetheless, not all types of RNNs are appropriate for the
analysis of natural language; for example, Simple Recurrent Networks (Elman 1990) are not able to
learn long-term dependencies due to vanishing gradients. A variant of recurrent neural networks that
is, in principle, capable of making inferences based on long-distance interactions is the Long Short-
Term Memory (Hochreiter and Schmidhuber 1997). Long Short-Term Memory (LSTM) networks
are designed to overcome the exploding and vanishing gradient problem by enforcing constant error
flow and making it possible to recursively exploit information from previous timesteps. From their
high accuracy (Linzen et al. 2016) and from further analysis (Gulordava et al. 2018), it seems now
clear that LSTMs not only can but do learn about both short and long distance relations in sentences
when they are e.g. embedded in a language modelling task.

A further challenge posed by sequences of natural language is that dependence does not flow
unidirectionally through sentences. LSTMs, on the contrary, only consider the left context of an
input. The following tweet is an example of why it can be important to incorporate the right context
of a word or phrase in a sentiment analysis classifier:

(5) My niece calling to sing Happy Birthday to me #love !!

In order to understand the author’s effective orientation towards their niece singing Happy Birthday,
the affective orientation of love should be available at the early timesteps. A bidirectional informa-
tion flow can be obtained by using two recurrent networks that are presented each sequence forwards
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and backwards respectively. Connected to the same output layer, the two networks provide com-
plete sequential information about every time step (Graves and Schmidhuber 2005). This property
motivates our use of a bidirectional LSTM as an emotion classifier.

3.2 Lexicon expansion

The lexicon expansion task is defined as follows. We are given a set of emotion classes C, and a
set W of word types extracted from a large corpus, which can be partitioned into L,U ⊂ W , the
sets of lexicon words and unlabelled words respectively. For ease of notation, we refer to the set
cardinalities as follows: |C| = m, |L| = l, and |U | = u. Typically l � u. We try to find a labelling
function λ that maps each unlabelled word to a probability distribution over m classes:

λ : U → Rm

w 7→ (y1, . . . , ym), s.t.
m∑

i=0

yi = 1

We choose the Label Propagation (LP) algorithm introduced by Zhu and Ghahramani (2002)
and propose a novel variant thereof that can solve the lexicon expansion problem. LP is a graph-
based semi-supervised technique that propagates labels from labelled to unlabelled nodes through
weighted edges. Conceived as an iterative transductive algorithm, LP was shown to have a unique
solution. That is, λ can be learned directly, without iteration.

Label propagation More formally, consider a set of label distributions YL = {y1, . . . , yl} which
correspond to the labelled data L = {(w1, y1) , . . . , (wl, yl)}, and a matrix W ∈ R(l+u)×(l+u) of
pairwise weights. The goal is to estimate the label distribution of the unlabelled data YU from the
weight matrix W and the gold label distributions YL. To do so, we build a fully connected graph
using labelled and unlabelled words as nodes. Edges between nodes are defined so that an edge
weight wij is proportional to the geometric proximity of two data points xi, xj in high-dimensional
space.

In the original version of Label Propagation, weights are defined in terms of squared Euclidean
distance and they are controlled by a hyperparameter α:

wij = exp

(
− (xi − xj) · (xi − xj)

α2

)
(4)

However, since cosine similarity is commonly preferred as a metric for word embeddings, we define
weights as:

wij = σ

(
α

(
xi · xj

||xi||2 ||xj ||2

)
+ β

)
(5)

The use of the logistic function and the bias is motivated by the need (i) to adapt the weight
computation to the range of the cosine function and (ii) to obtain a uniform weight formula regardless
of the number of parameters.1

Finally, define a probabilistic transition matrix T ∈ [0, 1](l+u)×(l+u) such that:

Tij = P (i→ j) =
wij∑l+u

k=1 wkj

(6)

1We also conducted preliminary experiments where we replaced the scalar α ∈ R by a vector α ∈ Rd that
controls edge weights along the d dimensions used to encode nodes. We used the following weighting function:

wij = σ
(
α ·

(
xi
||xi||2 �

xj

||xj ||2

)
+ β

)
, a cosine similarity where every element-wise multiplication (� is the Hadamard

product) is scaled by a dimension-specific parameter. Unfortunately, this formulation resulted in a loss of performance
compared to the one that uses the scalar parameter α.
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and a label matrix Y ∈ [0, 1](l+u)×m, where Yi stores the probability distribution over labels for
node xi. Notice that T is column-normalised, so that the sum of the probabilities of moving from
any node i to node j amounts to 1.

The rows of YL are initialised according to the lexicon. If the lexicon only provides one label per
word, then a probability value of 1 is assigned to that label. Since the NRC Emotion Lexicon maps
words to multiple labels, we uniformly distribute the probability mass among all positively annotated
classes. For the initialisation of YU , which Zhu and Ghahramani (2002) consider irrelevant, we assign
a uniform probability of 1/m to every label.

LP algorithm First, the transition probability matrix T needs to be row-normalised. Then, it is
partitioned into four sub-matrices:

T =

[
Tll Tlu
Tlu Tuu

]

Label Propagation consists in iterative updates of the unseen label distributions

YU ← TuuYU + TulYL (7)

and converges to a unique solution (Zhu and Ghahramani 2002):

YU = (I − Tuu)
−1
TulYL (8)

As the conditions for computing the matrix inverse are not always met, least square approximation
is used in our implementation of label propagation.

Hyperparameters The formulation of edge weights in LP (Equation 4) ensures that when the
hyperparameter α→ 0, the label of a node is mostly influenced by that of its nearest labelled node,
and when α → ∞, the label probability distribution of a node reflects the class frequency in the
data since it is affected by virtually all labelled nodes in the graph.

Zhu and Ghahramani (2002) presented two techniques to set the parameter α. The simplest
one is to find a minimum spanning tree over all nodes. Kruskal’s algorithm (Kruskal 1956) can be
used to build a tree whose edges have the property of connecting separate graph components. The
second approach relies on gradient descent in order to find the parameter α and β that minimise
the entropy H of the predictions.

H = −
∑

ij

Yij log Yij (9)

After the optimisation of the edge weights, the transition probability matrix T is smoothed via
interpolation with a uniform matrix U , such that Uij = 1 / (l + u), and where ε is the interpolation
parameter:

T̃ = εU + (1− ε)T (10)

Since extreme values of α and β can map very similar cosine similarity to the negative tail of the
logistic function, where values approach 0 at an exponential rate, the probability matrix needs to
be smoothed to avoid that in such cases virtually all the probability mass propagates to one of
the analogously near neighbour. Consider, as an example, the parameters α = 100 and β = −100
as well as a word x1 with its nearest neighbours x2 and x3, such that cos(θ(x1,x2)) = 0.8 and
cos(θ(x1,x3)) = 0.7. Then, w12 = 2.06e−9 and w13 = 9.36e−14. Virtually all probability mass is
on w12 and labels only propagate from x2 to x1. The probability matrix needs to be smoothed to
avoid this problem.
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# labels 0 1 2 3 4 5 6 ¿ 0
# lemmas 1072 1813 906 447 253 41 2 3462

Table 2: The number of words in the NRC Emotion Lexicon (Mohammad and Turney 2013) having
k labels.

Label propagation in batches Label propagation is a computationally efficient algorithm. Since
iteration is avoided by directly computing a unique algebraic solution, most computational resources
are employed for the calculation of the probabilistic transition matrix T and for the optimisation of
the parameters α, β and ε.

The size of T can, however, cause memory issues. Consider that the Hashtag Corpus is comprised
of V = 32, 930 word types. LP must thus store the cosine similarity values between each word pair,
so T ∈ RV×V and the transition matrix has a size of approximately 2GB for half-precision floating
point numbers. While this is still a manageable size, if we wanted to include all the word types for
which distributional representations are available from the ENCOW corpus (Section 5.1), T would
have a size of ca. 180GB. In other words, an inherent problem of the transition matrix is that it
grows quadratically with the vocabulary size.

In order to ensure that LP is tractable for large vocabularies, we introduce Label Propagation
in batches. Instead of keeping the entire T ∈ RV×V in memory during optimisation, a subset of the
vocabulary with size W < V is randomly selected and the corresponding submatrix TW ∈ RW×W

is computed. If enough random submatrices are sampled for optimisation, the obtained parameters
will approximate those that would result from optimising on T ∈ RV×V . Furthermore, the use of
random submatrices is motivated by the need of the parameters to learn to adapt to any random
subset of the vocabulary.

Randomly selecting W word types can result in high class imbalance: it is possible that a
large amount of the reduced vocabulary consists of labelled terms or, conversely, that all words are
unlabelled. Both these possibilities contradict the assumption of Label Propagation that |L| � |U |.
Therefore, we fix the distribution of labelled and unlabelled terms to be equal to the proportion
they have in the original vocabulary of size V .

4. Linguistic resources

An important attempt to organise affective phenomena was made by Ekman (1992), who introduced
the concept of basic emotions, i.e. affective states that seem to share a connection with physiological
processes and universal facial expressions. Whether it is possible to identify a fixed number of
categories for a multiplicity of moods, attitudes, and traits is outside the scope of this work but we
consider a few prominent categorisations to ensure at least a partial psychological grounding of the
deployed resources.

Researchers have different opinions as to which affective states constitute a justifiable set of
elementary categories. Ekman’s Six include anger, disgust, fear, joy, sadness, and surprise. Adding
trust and anticipation yields Plutchik’s eight primary emotions (Plutchik 1980). A collection of
seven categories (joy, fear, anger, sadness, disgust, shame, and guilt) was used in the ISEAR project

# lemmas 0 1 2 3 4 5 6 ¿ 6
# tweets 7513 7207 4187 1442 498 162 30 12

Table 3: The number of tweets in the Hashtag Corpus (Mohammad and Kiritchenko 2015) with k
emotion words from the NRC Lexicon (Mohammad and Turney 2013).
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Emotion label # lemmas # tweets
anger 1555 1247

disgust 761 1058
fear 2816 1476
joy 8240 689

sadness 3830 1191
surprise 3849 534

Table 4: The class frequencies in the NRC Emotion Lexicon (Mohammad and Turney 2013) and in
the Hashtag Corpus (Mohammad and Kiritchenko 2015).

(Scherer and Wallbott 1994) whereas Izard (1971) counted nine basic emotions. Mehrabian and
Russell (1974) propose a more compact classification including only three independent emotional
dimensions—pleasure, arousal and dominance—and many other emotional frameworks have been
developed.

While it is possible to choose from a variety of sets of affective states, the amount of currently
available emotion-annotated data sets is scarce. The SemEval-2007 Affective Text corpus is one such
data set; it is a collection of news titles extracted from newspapers and news web sites (Strapparava
and Mihalcea 2007) and it consists of 1250 headlines labelled with Ekman’s six emotions. In an at-
tempt to obtain fine-grained labels, six annotators independently assigned to every headline–emotion
pair (h, e) an emotion score ranging from 0 to 100 indicating how intensively a news title h conveys
the emotion e. The data was originally made available in two sets: a development set consisting of
250 headlines and a test set of 1,000 headlines.2 In later work on supervised classification methods,
the 1,000 news titles were used as training data, and the remaining 250 for testing (Mohammad
and Kiritchenko 2015). Moreover, in many experiments, the vector of six emotion scores was made
coarser-grained in order to better fit specific types of classification algorithms. In single-label set-
tings, only the most dominant emotion, i.e. the emotion with the highest score, was used as a
headline label by Chaffar and Inkpen (2011). For multi-label classification, only emotions with a
score higher than a threshold k are considered present in a given headline: while the task description
of SemEval-2007 Affective Text indicates k = 50, other researchers set the threshold to a lower value
(e.g. k = 25 was used by Mohammad and Kiritchenko (2015)).

The SemEval dataset does not contain text from social media platforms, which are nowadays
a conspicuous source of real language production and increasingly attract interest in the field of
opinion mining. An attempt to cover this type of content was made by Mohammad and Kiritchenko
(2015), who created a labelled corpus of tweets (Twitter posts) leveraging the use of hashtags.3

Their Hashtag Emotion Corpus consists of about 21,000 tweets annotated with one out of the six
emotions proposed by Ekman.

Other relevant Twitter corpora are EmoTweet-28 (Yan et al. 2016), which uses a set of 28
emotions, the multilingual SemEval-2018 Affect in Tweets Dataset (Mohammad et al. 2018)—with
11 emotion classes—and the Twitter corpus collected by Klinger et al. (2018)4 and annotated with
Ekman’s Six. Yet other corpora were compiled with sentence-level annotation. Sentences extracted
from 22 fairy tales were annotated by (Alm et al. 2005) with 5 emotions (joy, fear, sadness, surprise,
and anger-disgust). Aman and Szpakowicz (2007) annotated about 5,000 sentences drawn from blog
posts with Ekman’s six emotions and a neutral category. Neviarouskaya et al. (2009) chose the nine
emotion categories proposed by Izard (and a neutral one) to label 1,000 sentences extracted from
stories on a variety of topics.

2This partition reflects the fact that the SemEval-2007 Affective Text task was aimed at unsupervised approaches.
3Hashtags are words immediately preceded by a hash symbol which mostly serve to signal the topic of Twitter

posts, as well as other sorts of metadata such as the tweeter’s mood.
4This corpus was not yet available when this study was performed.
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Figure 1: The class distributions of the Hashtag Corpus (Mohammad and Kiritchenko 2015) and
the NRC Lexicon (Mohammad and Turney 2013).

Lexical resources are not abundant either. WordNet Affect and the Hashtag Emotion Lexicon
use Ekman’s Six. WordNet Affect (Strapparava et al. 2004) is a word-emotion association lexi-
con consisting of a few more than 1,500 terms. The Hashtag Emotion Lexicon (Mohammad and
Kiritchenko 2015) contains 11,418 lemmas automatically obtained from the Hashtag Emotion Cor-
pus; each word-emotion pair (w, e) comes with a real-valued Strength of Association (SoA) score
between a word w and an emotion e: SoA(w, e) = PMI(w, e)− PMI(w,¬e).

On the other hand, the NRC Emotion Lexicon (Mohammad and Turney 2013) combines the
eight primary emotions proposed by Plutchik with positive and negative polarity, for a total of ten
possible labels. The NRC Emotion Lexicon includes ca. 15,000 English words, it was manually
created via crowdsourcing, and it uses binary word-emotion association scores.

Mehrabian and Russel’s notions of pleasure, arousal, and dominance (1974) were deployed for
the manual annotation of Affective Norms for English Words (Bradley and Lang 1999) and, with the
addition of predictability, for the construction of a multimodal database, annotated using recordings
of subjects’ physiological responses to affective stimuli (Soleymani et al. 2012). Finally, SentiSense
(de Albornoz et al. 2012) and SenticNet 3 (Cambria et al. 2014) make use of WordNet to fine-grain
their word annotations.

The Hashtag Emotion Corpus and the NRC Emotion Lexicon

We choose to conduct our experiments using the Hashtag Emotion Corpus and the NRC Emotion
Lexicon. The choice of the corpus is led by size considerations, the type of medium it was collected
from, and the topics covered by the posts. The largest lexicon available with the same label set
would be the Hashtag Emotion Lexicon but it was compiled using the corpus itself. The largest
resource with an appropriate label set is then the NRC Emotion lexicon.

The Hashtag Emotion Corpus consists of 21,051 texts annotated with Ekman’s six basic emotions
and it contains ca. 33000 word types; each text is assigned a single emotion label. The NRC Emotion
Lexicon contains 14,182 words. However, only 3,462 lexicon words have at least one of Ekman’s six
emotion labels—the others are either annotated as positive, negative, anticipation, trust, or they
are neutral, i.e. no label is set to 1. Each lexicon word is tagged with an average of 0.44 Ekman’s
emotions. Table 2 reports the labels-per-lemma statistics.
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Furthermore, as Figure 1 shows, the class distributions are not uniform. In the lexicon, positive
emotions (surprise and joy) are under-represented with respect to negative emotions (Table 4). In
the corpus, texts annotated as joy form a disproportionately large percentage, while anger and
disgust are the minority classes (Table 4). A text from the Hashtag Corpus contains on average 1.09

Frequency lemma Labels
1218 love joy
621 good joy, surprise
418 afraid fear
411 happy joy
389 friend joy
388 god fear, joy
367 hate anger, disgust, fear, sadness
342 fear anger, fear
311 feeling anger, disgust, fear, joy, sadness, surprise
287 joy joy

Table 5: The 10 most frequent NRC (Mohammad and Turney 2013) lemmas and their emotion
labels.

emotion words that also occur in the NRC lexicon and approximately one third of the tweets does
not contain any lexicon words. Table 3 presents the distribution of emotion words among texts.
An emotion word has an average frequency of 6.64 and only 1,545 lemmas occur at least once in
the Hashtag Corpus. Finally, Table 5 illustrates the most frequent emotion words along with their
emotion labels according to the NRC Emotion Lexicon.

Overall, the presented statistics show that the coverage of an unexpanded lexicon is too small
for emotion classification. These statistics were obtained by lemmatising the Hashtag Corpus and
the values resulting from the non-lemmatised corpus do not significantly vary.

5. Evaluation

5.1 Emotion-specific embeddings

The first step of the proposed lexicon expansion method consists in learning emotion-specific word
embeddings, i.e. distributed word representations that are able to encode affectual orientation and
strength. To learn an emotion-specific vector space we employ a recurrent neural network classifier.
The classifier labels tweets from the Hashtag Corpus with Ekman’s six basic emotions (Section 4) and
uses word vectors as trainable features. As the model learns to classify, we expect word embeddings
to store affective orientation.

We use a bidirectional LSTM followed by a softmax or a sigmoid output layer: the softmax
activation is used to obtain a probability distribution over the six emotion classes (multinomial clas-
sification) whereas a sigmoid layer is used to produce one probability value for each emotion class
(multi-label classification). The relevant output of the classifier are the optimised word represen-
tations that can be used to compute the spatial similarities necessary for lexicon expansion. The
BiLSTM is trained using Keras (Chollet et al. 2015) and a comprehensive list of hyperparameters
can be found in Appendix A.1. We experiment with different combinations of three regularisation
techniques: `2 regularisation, batch normalisation, and dropout.

For the initialisation of the embedding layer we rely on a vector space learned from the ENCOW
corpus (Schäfer and Bildhauer 2012, Schäfer and DFG 2015) using the CBOW model (Mikolov
et al. 2013). The ENCOW dataset contains approximately 425 million sentences and more than 9.5
billion tokens. The chosen vector dimensionality is 300, as suggested in (Mikolov et al. 2013). We
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experiment with different thresholds of word frequency, excluding either words whose raw frequency
in the corpus is lower than 100 or those occurring less than 150 times. The window size is set to 5
as we expect such a context to be a desirable trade-off between computational complexity and the
ability to capture semantic information.

5.2 Emotion lexicon expansion

To expand the NRC Emotion Lexicon we employ our novel variant of the Label Propagation al-
gorithm. Although we have more than 300,000 word vectors at our disposal, label propagation is
only applied to the approximately 30,000 vectors that correspond to the word types of the Hashtag
Corpus. This decision is motivated by the need to limit the execution time of the propagation al-
gorithm and by the consideration that only the mentioned subset of word embeddings is optimised
for emotion-related tasks.

Furthermore, with the proposed batch-based variant of label propagation, we try to approximate
the results of standard label propagation optimisation—where the word similarity graph is comprised
of all available word types—using multiple batch optimisations—where only a subset of the word
types is used to construct the similarity graph. We expect the parameters to learn to robustly adapt
to any random subset of the vocabulary and, as a consequence, to discard irrelevant features.

The label propagation hyperparameters α, β ∈ R are optimised using Tensorflow5 (Abadi et al.
2015) and their values are reported in Appendix A.2.

5.3 Emotion classification

To test whether a combination of corpus- and lexicon-based approaches improves classification,
we use the expanded emotion lexicon to augment pre-trained word representations that serve as
features for an emotion classifier. We deploy the same classifier proposed for learning task-specific
word representations: an embedding layer maps words to their vector representations, which are
the input to a bidirectional LSTM; the output layer can have a softmax or a sigmoid activation for
multinomial and multi-label classification respectively.

For the initialisation of the embedding layer, we leverage the vector space previously learned
by our bidirectional LSTM (Section 5.1) from the Hashtag Corpus. This 300-dimensional vector
space includes approximately 30,000 word types and it represents the corpus-based portion of the
information provided to the classifier. To also provide the classifier with lexicon-based cues, we
append the label probability distribution vector of a word occurring in the expanded emotion lexicon
to the corresponding fine-tuned word vector. Since the lexicon is expanded to all the word types
in the Hashtag Corpus, each embedding receives an emotion-specific initialisation. Notice that the
label distributions of the original lexicon words are left unvaried due to the properties of Label
Propagation.

To ensure that the lexicon is not specialised to the training dataset and to assess its transferability
to a different domain, we also classify the SemEval headlines introduced in Section 4 using 1,000
titles for training and the remaining 250 for testing. We train the BiLSTM classifier using Keras
and experiment with `2 regularisation, batch normalisation, and dropout. Precise hyperparameter
values are reported in Appendix A.3.

6. Results and discussion

6.1 Emotion lexicon expansion

To perform an intrinsic evaluation of our lexicon expansion method, we choose 10-fold cross-validation.
The intersection between the word types of the Hashtag Corpus and the NRC Emotion Lexicon is

5The used Tensorflow networks and functions can be found at github.com/Procope/emo2vec.
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partitioned into 10 equally sized subsamples. The quality of the expanded lexicon is assessed by
computing the average Kullback-Leibler divergence between the emotion label probability distribu-
tions obtained by normalising the NRC Emotion Lexicon and the distributions resulting from label
propagation.

Three baseline lexicon expansion methods are considered: (i) assigning a uniform class distribu-
tion to all words, (ii) assigning to all words a distribution where the entire probability mass is given
to the majority class according to the Hashtag Corpus, (iii) assigning to all words the overall prior
class distribution of the Hashtag Corpus.

Table 6 shows the average Kullback–Leibler divergence for 10-fold cross-validation of the de-
scribed lexicon expansion techniques. Divergences obtained using label propagation and the uni-

Lexicon expansion KL divergence
Uniform distribution 1.34
Majority class (Hashtag Corpus) 21.32
Prior class distribution (Hashtag Corpus) 1.53
Label propagation (α ∈ R) 1.31
Batch label propagation (α ∈ R) 1.31

Table 6: Average Kullback–Leibler divergence for 10-fold cross-validation on the NRC Emotion Lex-
icon (Mohammad and Turney 2013). The lowest propagation.

form class distribution yield a significantly6 lower divergence than the prior class distribution of the
Hashtag Corpus. Label propagation with a scalar parameter α is the method that best minimises
the average Kullback–Leibler divergence. Remarkably, batch label propagation performs similarly to
standard propagation although it uses batches of size 5,000 (compared to a total of more than 30,000
word types), showing that batch approximation can work for graph propagation. Yet, although LP
reaches the lowest divergence, it is not significantly different from the uniform distribution. It is
relevant to note that since KL divergence is computed on the small subset of labelled words, this
intrinsic measure overlooks the effect of label propagation on the vast majority of the vocabulary
words, for which we think propagation is informative. To explain this surprising result, however, we
examine how emotion labels propagate through the graph.

For this purpose, it is useful to consider the trajectories of words belonging to the two discarded
emotion categories, trust and anticipation. These words tend to receive the label joy more often
than the other labels after propagation. This is likely due to the fact that, since joy is the most
frequent emotion occurring in the Hashtag Corpus, label propagation tends to assign the label joy
more often than the other labels. Interestingly, however, anticipation words are labelled 84% of the
time as joy, surprise and fear words (in descending frequency). This distribution seems to be a good
fit to the definition of anticipation proposed by the Cambridge dictionary: “a feeling of excitement
about something that is going to happen in the near future” (anticipation n.d.) Moreover, in a range
from interest to distraction, surprise was seen by Plutchik as an opposite to anticipation, the latter
mainly consisting of expectation and prediction. It is possible that label propagation, in the lack
of a proper label, failed to make a distinction between these two ends of the spectrum and merged
them. This behaviour exerts virtually no influence on classification as trust and anticipation tweets
(i.e. tweets that contained the hashtags #trust and #anticipation) are not included in the Hashtag
Emotion Corpus but it exemplifies the dynamics of label propagation and it gives us hope that they
will still be useful in a downstream task.

6We used Approximate Randomization Tests (Edgington 1969) adjusting the significance value 0.05 using Šidák
correction for multiple tests (Šidák 1967).
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6.2 Emotion classification

To extrinsically evaluate the proposed emotion classifier, we compare it with (Mohammad and
Kiritchenko 2015) and with two baselines. The first one is a version of the bidirectional LSTM
classifier introduced at the beginning of this section that only exploits our emotion-specific word
embeddings. As an alternative, the pre-trained emotion-specific embeddings are concatenated with
the probability distributions indicated by the unexpanded NRC Emotion Lexicon. Words that do
not occur in the lexicon have their vectors concatenated with a vector of probabilities from a uniform
distribution. The uniform distribution outperforms the overall probability distribution of emotions
in the lexicon as an initialisation method.

The precision, accuracy, and F1 score of all the presented classifiers are reported in Tables 7
and 8. All metrics are computed using micro-averaging to allow comparisons with previous work
and to reduce the effect of label imbalance. Using macro-averaging would assign more weight to the
majority classes, for which classifiers tend to perform better due to the larger amount of training
instances.

Classifier P R F1

One-vs-all SVM (Mohammad and Kiritchenko 2015) 55.1 45.6 49.9
Multinomial BiLSTM 55.0 55.0 55.0
Multinomial BiLSTM + NRC Emotion Lexicon 55.2 55.2 55.2
Multinomial BiLSTM + expanded lexicon (α ∈ R) 56.2 56.2 56.2
Students 40.9 40.4 40.6

Table 7: Results of classification on the Hashtag Emotion Corpus: precision, recall, and F1 score.
The expanded lexicon provides an absolute improvement of 6.3 in micro-averaged F1 score
compared to (Mohammad and Kiritchenko 2015).

For the Hashtag Emotion Corpus, the bidirectional LSTM classifier introduced as a baseline outper-
forms the one-vs-all SVM with binary features, setting a relatively high lower bound for our task.
Including as features the label distributions of the NRC Emotion Lexicon slightly increases classi-
fication accuracy, suggesting that corpus- and lexicon-based clues are complementary. The limited
increment in accuracy can be explained by the fact that a text from the Hashtag Corpus includes on
average 1.09 NRC emotion words and that approximately one third of the tweets does not contain
any NRC lemmas.

In contrast, the LSTM classifier shows a remarkable increase in accuracy when the expanded
lexicon is provided. Although the quality of the expanded lexicon is lower than the quality of the
hand-annotated NRC Emotion Lexicon, the wider coverage of the former seems to successfully help
the classifier. Regardless of whether the LSTM classifier uses no lexicon, the NRC lexicon, or the
expanded one, the multinomial variant consistently obtains higher accuracy scores. The classification
report of our best classifier is presented in Table 9.

In the evaluation on the Hashtag Emotion Corpus, the pre-training of sentiment embeddings on
the Hashtag Emotion Corpus may positively influence the ten-fold cross-validation on that same cor-
pus.7 Unfortunately, ten-fold cross validation of the complete system was too expensive to perform
using the resources available. This posed us to do a separate evaluation on the SemEval headlines
data set, which is disjoint and thus does not have this problem. Despite this shortcoming in the
evaluation on the Hashtag Emotion Corpus, the results show us that the BiLSTM models (which
all have this advantage) benefit strongly from an expanded lexicon.

Humans as classifiers In Section 2.1, we have reported the inter-annotator agreement studies
conducted by Strapparava and Mihalcea (2007) for the SemEval headlines corpus. These have shown
that trained annotators agree with a Pearson correlation of 53 using a simple average over classes; a

7As was pointed out by one of the reviewers.
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Classifier P R F1

One-vs-all SVM (Mohammad and Kiritchenko 2015)
1. n-grams in headlines dataset and Hashtag Corpus + domain adaptation 46.0 35.5 40.1
2. n-grams in headlines dataset + NRC Emotion Lexicon 46.7 38.6 42.2

Multi-label BiLSTM 38.8 50.3 43.8
Multi-label BiLSTM + NRC Emotion Lexicon 39.2 50.9 44.3
Multi-label BiLSTM + expanded lexicon 43.1 48.9 45.9

Table 8: Results of classification on the SemEval headlines dataset (Strapparava and Mihalcea 2007):
precision, recall, and F1 score. The bidirectional LSTM informed with the expanded lexicon
is the best classifier when it comes to combining precision and recall.

frequency-based average yields a correlation of 43. Rather than reproducing another inter-annotator
agreement study, we test the accuracy of an untrained person with respect to an emotion-annotated
data set, the Hashtag Corpus.

Our survey includes 33 participants; these undergraduate and graduate students were asked to
read 25 tweets and to assign to each of them one of Ekman’s basic emotions. Each participant was
given a different set of tweets, for a total of 825 collectively classified instances. All participants
were enrolled in an international study program, have a good command of English but various L1s.8

The results of our survey are shown in Table 10.
In the attempt to establish an upper bound, we find evidence that an untrained annotator is

considerably less accurate than our LSTM classifiers. This outcome suggests that the accuracy of
emotion classifiers is necessarily limited by the lack of contextualisation and background information
about the author of a tweet. Assigning an emotion to a short paragraph is a hard task for both a
human and a statistical classifier as it requires more information than it is available in the paragraph
itself.

Emotion P R F1

anger 38 27 32
disgust 40 18 25
fear 58 52 55
joy 66 76 71
sadness 40 44 42
surprise 53 46 49
average 56.2 56.2 56.2

Table 9: Results of the best performing clas-
sifier (BiLSTM with expanded lexi-
con) on the Hashtag Corpus.

Emotion P R F1

anger 25 50 33
disgust 18 70 29
fear 48 22 30
joy 52 46 49
sadness 50 52 51
surprise 40 23 29
average 40.9 40.4 40.6

Table 10: Precision, recall, and F1 score of
student answers to a survey based
on the Hashtag Corpus.

A possible explanation for the surprisingly low accuracy of the students is to be found in the
quality of the Hashtag Corpus. Mohammad and Kiritchenko (2015) clarify that there are essentially
three types of tweets: those where the affectual orientation is straightforward even without the emo-
tion hashtag, those where only the hashtag makes the affectual orientation explicit, and those where
text and hashtag seem to conflict. In the second and in the third case, humans may tend to answer
according to a uniform prior while the model’s prior belief corresponds to the class distribution of

8As noted by one of the reviewer, different levels of language proficiency can affect lexical knowledge. We acknowl-
edge that a group formed exclusively by native English speakers would have given more robustness to the survey but
it was not possible to gather such a group during this study.
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Figure 2: The class distributions in the Hashtag Corpus (Mohammad and Kiritchenko 2015) and in
the answers to the survey (true positives + false positives). The values on the y-axis are
expressed in percentage form.

the dataset. The accuracy of the model seems to benefit from such an informed prior. Interest-
ingly, Figure 2 shows how the—broadly speaking—posterior class distribution of students coarsely
corresponds to the data likelihood. Moreover, the different levels of English proficiency among the
participants have likely affected their ability to recognise the prevalent affect of texts, especially
when this is expressed using infrequent words which might be unknown to non-native readers.

A final consideration is that, in the absence of clear emotional content, both humans and the
model are expected to comply with the gold standard label selected by annotators whose agreement
score is remarkably low. It is likely that different individuals adopt varying decision strategies and
thresholds to determine the emotion conveyed by a piece of text. It is worth exploring, in future,
whether the lexicon expansion algorithm or the downstream classifier can approximately capture
similar reasoning processes.

7. Conclusion

In this paper, we have argued and shown that combining corpus-based and lexicon-based approaches
to affect detection can improve the accuracy of emotion classifiers. In particular, we have shown
that label propagation can be applied to a fully connected graph wherein words are vertices and
edges are weighted by geometric proximity in order to expand an existing emotion lexicon. We
have additionally demonstrated that graph propagation can rely on task-specific word embeddings
to initialise node representations.

We have introduced two variations of the Label Propagation algorithm: (i) a novel formula-
tion of the transition edge weights that allows the use of cosine similarity as a distance metric for
word representations, (ii) and a batch-based training algorithm whose reduced time and memory
requirements make expansion tractable for large vocabularies.

To assess the utility of lexicon expansion, we have provided a bidirectional LSTM classifier with
the class probability distributions inferred through label propagation—i.e. with the extended emo-
tion lexicon. Our comparisons with the model of Mohammad and Kiritchenko (2015), a bidirectional
LSTM, and a bidirectional LSTM using the NRC Lexicon have shown that the model that uses the
expanded emotion lexicon consistently outperforms the other models.
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In future, in light of the latest developments in the field of neural approaches to graph processing,
we plan to perform label propagation using Graph Convolutional Networks (Defferrard et al. 2016,
Kipf and Welling 2016), which have been shown to combine high classification accuracy on various
benchmark graphs with fast training times.

We also plan to employ (i) GloVe embeddings (Pennington et al. 2014) as an initialisation for
trainable specialised word representations since they were shown to capture semantic similarity better
than Word2Vec embeddings as well as (ii) the morphology-aware FastText vectors (Bojanowski
et al. 2016), which obtain high scores on various affect analysis benchmarks. Although emotion-
specific embeddings have proven to be a reliable source for the construction of similarity graphs
and they can be enhanced introducing e.g. lexical-contrast from semantic networks, there exist
alternative representations: we will experiment with character-based models and with advanced
co-occurrence statistics.
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Appendix A. Hyperparameters

The software related to this paper is open-source and available at github.com/Procope/emo2vec.

A.1 Emotion-specific embeddings

The emotion classifier was trained using Keras (Chollet et al. 2015). Here, we provide an overview
of the hyperparameters that we used.

• Solver: Adagrad, with a learning rate decay of 1e−4.

• Learning rate: The initial learning rate was set to 0.005.

• Epochs: The model was trained for 30 epochs.

• Dimensionality: We used 300-dimensional word representations with a word frequency
threshold of 150.

• LSTM layer: The forward and backward layers were trained with 128 output dimensions.
Increasing the number of output dimensions did not provide an improvement.

• Regularisation: 10% dropout and 20% recurrent dropout (Srivastava et al. 2014); a stronger
dropout did not yield a better performance. Additionally, we applied `2 regularisation (Keras
default).

A.2 Label propagation

The following parameters of our variant of Label Propagation were optimised using Tensorflow
(Abadi et al. 2015).

• Standard label propagation

– epochs: 100

– α = 0.007

– β = 2.41

– d = 300

• Batch-based label propagation

– batch size: 5000

– number of batches: 1000

– epochs per batch: 3

– α = −0.001

– β = 0.9

– d = 300

A.3 Emotion classification

This is an of overview the hyperparameters that were used for the best emotion classifier.

• Solver: Adagrad, with a learning rate decay of 1e−3.

• Learning rate: The initial learning rate was set to 0.01.

120



• Epochs: The model was trained for 20 epochs.

• Dimensionality: We used 300-dimensional word representations with a word frequency
threshold of 150.

• LSTM layer: The forward and backward layers were trained with 128 output dimensions.
Increasing the number of output dimensions did not provide an improvement.

• Regularisation: 10% dropout and 20% recurrent dropout (Srivastava et al. 2014); a stronger
dropout did not provide better performance. Additionally, we applied `2 regularisation (Keras
default).
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