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Preview

I Preferences should be shared between parsing and generation, if
we want a parser to be a able to recover the meaning that was
the input of a generator.

I Reversible Stochastic Attribute-Value Grammars aim to
integrate parsing and generation in one model.

Message #1: Reversible Stochastic Attribute-Value grammars are
truly reversible.
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Preview

Message #2: We can (and should) understand statistical models.
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Attribute-value grammar

I Representation of lexical items and grammar rules as
attribute-value structures

I Construction of derivations via unification
I Since unification is associate and commutative, attribute-value

grammar can be used in two directions (parsing and generation)
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Ambiguity

I Parsing a sentence can give multiple readings, not all equally
likely

I Generating from a logical form can give multiple realizations,
not all equally fluent
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Solving ambiguity

I Models for parse disambiguation
I Models for fluency ranking
I For attribute-value grammar: feature-based models, such as

maximum entropy models
I Stochastic Attribute-Value Grammar (SAVG)
I State of the art systems: separate models for parse

disambiguation and fluency ranking
I Directional models
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Reversibility

I We want:
I A parser that can recover the meaning that was the input to a

generator
I A generator that can produce the sentence that was the input of

a parser

I If not, communication will be difficult
I Consequently, preferences in parsing and generation should be

shared
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Subject/object fronting in Dutch

Consider the two possible readings of the sentence Jan zag de man
(Jan saw the man):

I [Jan]su zag [de man]obj
I [Jan]obj zag [de man]su

Subject fronting is preferred in Dutch, consequently:

I In parse disambiguation we prefer reading of a fronted NP as a
subject

I In fluency ranking we prefer realizations that have a fronted
subject NP
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Reversible models

I So, why use separate models for parse disambiguation and
fluency ranking?

I Use one model for both tasks
I Reversible SAVG (De Kok et al., 2011)
I Shares preferences are shared between parsing and generation
I Performance of RSAVG does not differ significantly from models

specific to parse disambiguation and fluency ranking
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Reversible SAVG

p(d|c) = 1
Z(c)

exp
∑

i

wifi(c, d) (1)

I Probability of a derivation d, given a set of constraints c
I These constraints are formed by the input (a sentence or logical

form)
I During training a weight wi is estimated for each feature fi
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Three kinds of features

Features that are active during:

1. parsing

2. generation

3. both tasks
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Uniform model
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Parse Both Generation
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Disambiguation model
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Fluency ranking model
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Reversible model?
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Parse Both Generation
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Or perhaps?

W
ei
gh
t

Parse Both Generation
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Research question

I Do reversible models use features used in both directions?
I If not, the model is not truly reversible

Daniël de Kok, University of Groningen Discriminative features in RSAVG



. . . . . .

Methodology

I Find discriminative features in directional and reversible models
using feature selection

I Calculate the contributions of the most discriminative features
to the model

I Compare features by class, to detects shifts in feature use in
reversible models, compared to directional models
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Feature selection

I A good feature selection method (De Kok, 2010) should be able
to remove:

I Features that change of value sporadically
I Features that correlate strongly with other features
I Features with values that do not correlate with the ranking or

classification

I For this experiment: a ranking of features
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Selection methods

I Which selection method should be used?
I Three candidates that use maximum entropy modeling:

I Grafting (Perkins et al., 2003)
I Grafting-light (Zhu et al., 2010)
I Gain-informed selection (Berger et al., 1996; De Kok, 2010)
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Grafting

1. Start with a uniform model

2. Pick the unselected feature with the highest gradient given the
current model

3. Optimize the weights of selected features

4. Goto step 2, unless the threshold is reached
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Grafting
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Grafting-light

I Same procedure as grafting
I Rather than performing a full optimization of the weights of

selected features, perform one step of gradient descent
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Gain-informed selection

1. Start with a uniform model

2. Pick the feature which provides the largest decrease of the
objective function, given the current model

3. Optimize the weights of selected features

4. Goto step 2, unless the threshold is reached
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Evaluation

I Evaluated in the context of the Alpino parser and generator for
Dutch (Van Noord, 2006; De Kok and Van Noord, 2010)

I Training: cdbl-part of the Eindhoven newspaper corpus
(syntactic annotations from the Alpino Treebank)

I Evaluation: part of the Trouw 2001 newspaper (syntactic
annotations from LASSY, part WR-P-P-H)

I Features before selection: 303872 (cutoff-2: 25578)
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Parse disambiguation
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Fluency ranking
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Our method of choice

I Grafting
I (If time is an issue, use grafting-light)
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Feature contributions
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Feature contributions
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Feature contributions

I If e is an evaluation function and F a model, we can calculate the
contribution of the ith feature: e(F0..i)− e(F0..i−1)

I If we select n features in total, then the overall improvement is:
e(F0..n)− e(F0)

I Consequently, we can calculate the contribution of a feature to
a model:

c(fi) =
e(p0..i)− e(p0..i−1)

e(p0..n)− e(p0)
(2)
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Feature classes

I We divide the features in the following classes:
I Dependency (parsing)
I Lexical (parsing)
I N-gram (generation)
I Rule (both)
I Syntactic (both)

I We then calculate per-class feature contributions of the 300
most discriminative features
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Per-class contributions in parse disambiguation

Class Directional Reversible
Dependency 21.53 13.35
Lexical 33.68 32.62
N-gram 0.00 0.00
Rule 37.61 47.35
Syntactic 7.04 6.26
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Per-class contributions in fluency ranking

Class Directional Reversible
Dependency 0.00 0.00
Lexical 0.00 0.00
N-gram 81.39 79.89
Rule 14.15 15.75
Syntactic 3.66 4.39
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Conclusions

I Grafting is the most effective selection method among the
candidates for this task

I Models can be compressed enormously using feature selection,
with very little loss in accuracy

I RSAVGs rely on features that are used in parsing and
generation, even more than directional models
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Thank you!
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