Transition-based dependency parsing with topological fields

Daniël de Kok Erhard Hinrichs

Background

Transition-based dependency parsing using a feed-forward neural network (Stenetorp, 2013, Chen and Manning, 2014):

- ▶ Low time/memory complexity: linear time in most transition-systems plus deterministic transition choice.
- ▶ Little feature engineering: the transition classifier uses concatenated embeddings of parts of the parser state as input.
- ▶ **High lexical coverage:** word embeddings extend implicitly learned selectional preferences beyond tokens in the training data.

Problem

However, lack of global information:

- ► Local features: Only a small portion of the parser state is typically 'featurized'.
- ▶ Lack of information: Due to deterministic left-right processing, some features are not available to inform early attachments.

Proposed solutions

- Retain a certain amount of competition between alternative analyses using a globally optimized model with beam search (Zhang and Clark, 2008).
- ► Featurize the complete parsing state by using recurrent neural networks (Dyer et al., 2015).

Proposed solutions

- Retain a certain amount of competition between alternative analyses using a globally optimized model with beam search (Zhang and Clark, 2008).
- ▶ Featurize the complete parsing state by using recurrent neural networks (Dyer et al., 2015).
- ► Can we find a linguistically-motivated alternative for parsing German?

Declarative clause with auxiliary/modal verb:

VF MF NF Constituent required

LK RK Optional

Declarative clause with auxiliary/modal verb:

Finite verb

Verb cluster

Constituent required

Constituent absent

Optional

Declarative clause without auxiliary/modal verb:

Declarative clause without auxiliary/modal verb:

Verb-final subordinate clause:

Example

	VF	LK	MF	RK	NF
MC:	Gestern	hat	er häufiger	angerufen	als heute
	Yesterday	has	he more-often	called	than today
MC:	Er	ruft	häufig	an	
	He	calls	frequently	up	
SC:		der	noch häufiger	anruft	als er
		who	more often	calls	than him

Regularities in fields

Topological fields:

- ▶ Impose **restrictions**. For instance:
 - Only one constituent is typically allowed in the VF.
 - Multiple constituents are allowed in the MF and NF.
- Can be used to state ordering preferences.

Topicalization

- German has a relatively free word order.
- Constituents with different grammatical roles can be topicalized.
- Leads to ambiguity between noun phrases:
 - ▶ Subject ↔ Direct object
 - ▶ Subject ↔ Predicative complement

VF ambiguity

Direct object ambiguity

- (1) [die Tänzerin] $_{su}$ versteht [die Sprache der Bewegung] $_{obj}$ the dancer understands the language of(-the) movement
- (2) [die Tänzerin] $_{obj}$ versteht [die Sprache der Bewegung] $_{su}$ the dancer understands the language of (-the) movement

Predicative complement ambiguity

- (3) [die Bayern]_{su} waren gestern [ein Vorbild]_{pred} the Bavarians were yesterday a role-model
- (4) [die Bayern] $_{pred}$ waren gestern [ein Vorbild] $_{su}$ the Bayarians were yesterday a role-model

Topicalization

Five most frequent relations from LK or RK to VF:

Relation	%
Subject	56.97
Prepositional phrase	18.54
Adverb	13.46
Direct object	4.17
Predicative complement	2.23

Topicalization

Five most frequent relations from LK or RK to VF:

Relation	%
Subject	56.97
Prepositional phrase	18.54
Adverb	13.46
Direct object	4.17
Predicative complement	2.23

If an NP populates the VF, its head should be attached as a subject, unless there is overwhelming evidence to the contrary.

Separable verb prefixes

- Verbs in German can have separable prefixes.
- Complicating factor in parsing: prefixes are often also valid words by themselves:
 - (5) Sie bindet das Pferd [fest] SVP . She ties the horse tight .
 - (6) Das Buch ist [fest] $_{ADV}$ gebunden . The book is tightly bound .

Separable verb prefixes

► A separated verb prefix is virtually always in the RK with its head in the LK:

Dependency label	Head	Dep	%
Separated verb prefix	LK	RK	99.95
	RK	RK	00.05

Separable verb prefixes

A separated verb prefix is virtually always in the RK with its head in the LK:

Dependency label	Head	Dep	%
Separated verb prefix	LK	RK	99.95
	RK	RK	00.05

Dependency relations from LK to RK:

Dependency label	%
Auxiliary verb	74.99
Separated verb prefix	20.16
Object infinitive	2.77
Conjunct	1.09
Adverb	0.85

Field prediction as sequence labeling

Motivation for LSTM:

(7) Die neue Strecke wird , wie geplant , jetzt begrünt . The new stretch is , as planned , now being-greened .

Motivation for bidirectional LSTM:

- (8) [die Siegerin] $_{VF}$ wurde disqualifiziert the winner was disqualified
- (9) [die Siegerin] $_{MF}$ zu disqualifizieren the winner to disqualify

Results dependency parsing

► Topological fields encoded using one-hot vectors as additional inputs.

Parser	LAS	UAS
De Kok 2015	89.49	91.88
Neural net $+$ TFs	90.00	92.36
Neural net $+$ gold TFs	90.42	92.76

▶ For more details on the model and evaluation, see the paper.

LAS improvement by dependency length

Wrap-up

Conclusions

- ► Topological fields can be used to account for regularities in word order across different clause types of German.
- ► Access to topological fields can improve transition-based dependency parsing by providing more global information.

Outlook

- ▶ Do models that featurize the full parser state (e.g. Dyer, et al. 2015) capture the same regularities?
- Explore similar ordering constraints/preferences for other languages:
 - ▶ The topological field model had been used to describe clause structure in other Germanic languages (e.g. Dutch, Haesery, et al., 1997 and Zwart, 2014).
 - ► Similar linear precedence constraints have been found for other languages (e.g. Slavic, Penn 1998).

Thank you!

Results token field prediction

- Model input: concatenation of token and tag embeddings.
- Data from TüBa-D/Z r9, with field nodes projected on tokens.

Parser	Accuracy (%)
LSTM + LSTM	93.33
${\sf Bidirectional\ LSTM} + {\sf LSTM}$	97.24

Dependency relations with highest ΔLAS

Dependency label	LAS \triangle
Coordinating conjunction (clausal)	11.48
Parenthesis	8.31
Dependent clause	3.49
Conjunct	3.38
Sentence root	2.92
Expletive <i>es</i>	2.71
Sentence	2.64
Comparative	1.87
Separated verb prefix	1.64
Direct object	1.59

Dependency label inventory

- ▶ Eine umfassende Constraint-Dependenz-Grammatik des Deutschen, Killian Foth, 2006.
- 34 dependendency labels.
- Extracted from constituency version of TüBa-D/Z (Versley, 2005).