A guide to modern UNIX systems

Daniél de Kok

A guide to modern UNIX systems
by Daniél de Kok
Copyright © 2007 Daniél de Kok

License
Redistribution and use in textual and binary forms, with or without modification, are permitted provided that the following conditions are met:
1. Redistributions of this book, or any parts thereof, must retain the above copyright notice, thislist of conditions and the following disclaimer.

2. All advertising materials mentioning features or use of this book must display the following acknowledgement: This product includes content
written by Daniél de Kok.

3. The name of the author may not be used to endorse or promote products derived from this book without specific prior written permission.

THIS BOOK IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THISBOOK, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

Table of Contents

(= = o TP SO PT PSPPI Xi
O [L oo (8 1o o RSP P PP P PR PPPPPR 1
1.1, A Short hisStOry OFf UNEX ..ottt e e e e e 1
1.2. The current state Of UNIXooinnii et 1
1.3, UNEX PRITOSOPNY .. et ettt ettt e e e et e e e et e e e et e eees 2
1.4, Free and Open SOUMCE SOFIWEIEuueiiiiii ettt ettt e et e et e e e e e e e ene s 2
2. A whirlwind tour through UNDX ...ttt et et e e ae e e enaans 3
2% B o o1 o [N 1 ¢ TSP PRSPPI 3
2.2. FINAING YOUN WY @IOUNGtuieiiitieee it e ettt e ettt ettt e e et et e et e bt e e e e et s e e e ee b reeeesteneeeeebaneeeenes 3
2.3, WOrKING WIth TIIES ...ttt et e s 5
2.4, 0rganiZing fllES ... e et eee 6
2.0, NG NI et et aaaas 7
AR el o 1o o LU | A PP PSP 8
I 0T 0= PSP UPPPTINN 9
130 W [L oo (8 1o o RO UPPPTTRPPPIN 9
3.2, EXECULING COMIMEINGScevtueeieit ettt ettt ettt ettt et et et et et et e et et e et et e e e eba e e e e ena s 9
3.3 IMOVING BIOUNG ...ttt et ettt ettt ettt e et a4 et e e s et e eb e et e et e e e e nna e e eneas 10
3.4, ComMMANG NISIONY ...ttt ettt ettt e et e e e et e e e et e e e e eee 15
3.5, COMPIELION ...ttt ettt e et e et e e et et 16
B [T = S PSPPI 18
3.7. Executing shell commands upon shell iNVOCATONooveeiiiiiiii e 19
A =S = 1 PO PSPPSR 21
A1, SOME TNEOTY ...ttt e et et ettt et e e et e et e e eeenaas 21
A.2. ANBIYZING FIIES . ovee ettt e 24
4.3. WOrking With dir€CLOMTESceueiiiiii et ettt e e 29
4.4. Managing fileS @and dir€CIOMTEScouuuieiiiii ettt e e e e 30
A5, POIMISSIONS ... eeitt ettt e et e ettt et e et e et e e e et e e at s 32
A.6. FINAING FIIES ettt ettt et e e et et ea e e e enaaas 41
4.7. ComPression and @rChIVINGccouuuueieii ettt ettt e et et 49
5. TEXE PIOCESSING ... eeett ettt ettt ettt ettt ettt e et a4 etttk e et etk e et e e e et e b e et e e et e b et b e e ena s 51
5.1. Simple text ManiPUIBLIONcoooiueiiiii et 51
5.2. REQUIAI EXPIESSIONStuieiiiti ettt ettt e et e ettt e e et et e e et e e et et e e e e et e e e e 66
SN (C]IIZ0) - TP .. JBeCCoCs PR . . AT 68
6. PrOCESS MENBGEIMENE ... ciet ettt ettt ettt et et et e e et e e et e e e r et e e et e e e e eae e eae s 71
L2 T I 0= o PP PT TR UPPPT 71
6.2. ANAlYZING FUNNING PrOCESSES ... ettettneteeti e teeti e et at et e et r ettt e ettt st et e ab e et et e et ebbaeeeenan s 74
6.3, M@NBGING PrOCESSESceetuueteitieeeeeti et eete et eat e et et e e e ettt e et e et e et e e e et ee b e et eaba e e e et e eeenanns 76
LN oo oo 11 (o) ST TPPPPTPRPPPIN 77
=] ol Tl = o] VAP PT O TUPPPTI 81

Vi

Vi

List of Figures

4.1. The Structure Of @ Nard [INK ... et e et e e et e e et e s et e s et enaeaaaanns 23
4.2. The structure of a SymbOIIC TINKcooouiii e e e eees 24
(ST T o0 S S = (=S PPRP 72

Vii

viii

viii

List of Tables

2.1,
3.1
3.2
3.3.
3.4.
3.5.
3.6.
3.7.
3.8.
3.9.
4.1.
4.2,
4.3.
4.4,
4.5.
5.1
6.1.

VisUal INAICAIONS FOr IS =F ..o et e e 5
MOVING DY CREIBCIEN ettt e e e et b e e e e ne s 11
DElEliNG Carallers i e ettt ettt ettt e et et e e e e e e eeee 11
SWEPPING CREIBCTEISee ettt e e et e et e b e e et e b e e e era s 12
MOVING DY WOTT ..ottt ettt e e et e e et et e e et et e e e e e b e e e e et e eeeananns 13
DEIELING WOPTS ...ttt ettt e ettt e e et et e e et e b e e et et n e e e et e e e e era s 13
MOGITYING WOIAS ...ttt ettt et e ettt e e et et e e et e bt e e ee b r e e e ettt neeeeebnaaeeenes 14
MOVING thrOUGN TINES ... ettt ettt e ettt e e e ertreeeere e eeens 15
DEIEIING TINES ...ttt ettt e s 15
Shell NISLOrY BIOWSING .. .ceveeiiii ettt e et e e e e e e e ena e e e enaas 16
ComMON TNOOE TIEIAS ...ttt ettt ettt e e e e e e e eneens 21
Meaning of NUMDErS in the MOE OCLELouuiiiiiii e 22
MOIE COMMIANG KEY'S ...ttt ettt e et e e ettt e e et e e e et et e e et et e e e e et e e e enan s 27
System-SPECific SEFACT FlAGSceeren e e e 38
Parameters for the '-type' OPEIaNGdoooieiiiiiii e et e 43
I CNAIBCTEr ClASSES ...ttt e 53
THE SITUCLUIE OF 8 PIOCESS ...eevtieeeett e ee ettt ettt ettt e et e ettt e e et e b e e et e b e e et bt e e e et rb e e e eana s 71

Preface

Thelast few years UNIX-like operating systems have grown with leaps and bounds, both technically, and in popul arity.
Since the beginning of the nineties the driving force behind UNIX-like systems has been the Internet, and so-called
“Open Source software”. Open source software can be distributed and modified freely, the Internet gave millions
computer users the opportunity to download and contribute to UNIX-like operating systems.

Another important trend in UNIX development istherise of full blown desktop environments like GNOME and KDE.
Traditionally, the X Window System was used to do work that required graphical representation, such as previewing
graphs. UNIX-like systems can now be used without ever using a shell. This made UNIX-like systems accessible to
the mainstream public.

This book aims to provide an introduction to the underlying technology of UNIX, that has a tradition that goes back
to the inception of UNIX. Understanding how UNIX works gives a user opportunities to use their systems more
effectively. The text- and file-oriented utilities of the UNIX system are often more flexible and faster than their
graphical counterparts. But it takes some time to get used to them.

Most material in thisbook appliesto al UNIX-like systems. Unfortunately, thereisalot of variance in how well these
systems conform to the Single UNIX Specification standard. When | wrote this book | have used three Open Source
UNIX-like operating systems as a reference, namely CentOS 4.4, FreeBSD 6.0, and Solaris 10. All the examplesin
this book have been tested with these operating systems, and differences between these systems are discussed where
deemed necessary.

| hope that you will have alot of fun reading this book!

Xi

Xii

Xii

Chapter 1. Introduction
1.1. A short history of UNIX

UNIX is an operating system that was originally developed in the 1960s by a group of employees of the AT&T
Bell Labs, including Ken Thompson and Dennis Ritchie. In 1973 it was decided to rewrite the UNIX assembly code
to the C programming language that was also developed by Thompson and Ritchie. C had little assumptions about
the underlying hardware, making UNIX a highly portable system. Besides that it made the code more readable for
outsiders, accelerating the adoption of UNIX within AT& T, universities and for-profit firms.

Near the end of the 1970s an influential strain of UNIX development outside the Bell Labs started to flourish. The
University of California at Berkeley had started producing their own distribution of the UNIX code, that required
a UNIX license. This distribution was named after its home town: the Berkeley Software Distribution (BSD). Over
the years, BSD contributed significantly to the development of UNIX. For instance, BSD introduced virtual memory,
TCP/IP networking and the Fast Filesystem (FFS) that is still used in various formsin modern UNIX variants.

AT&T commercialized UNIX during the 1980s, turning it from aresearch operating system into a product that should
bring in cash for AT&T. The commercial efforts resulted in the development of UNIX System Il and UNIX System
V. Many third partieslicensed the commercial UNIX source code and made their own variants, including SCO UNIX,
HP-UX and Al X. At the end of the 1980sthe UNIX marketplace was dominated by many incompatible UNIX variants
that were based on AT& T UNIX System I11 or V, and the BSD UNIX distribution that still contained to much AT& T
code to be distributed freely. During this time Keith Bostic started a project to reimplement code that was AT& T
licensed. As aresult the University of California in Berkeley was able to release a free operating system that was
nearly complete. AT&T did not agree that all their proprietary code was removed and sued BSDi, a company that had
started selling a commercial version of the BSD code. The lawsuit was settled in 1994, after Novell bought UNIX
from AT&T, in away that was quite favorable to Berkeley. This was a blessing for two projects that have built afree
BSD operating system, NetBSD and FreeBSD, as well as BSDi.

BSD would probably be the dominant free UNIX-like operating system if AT&T did not sue BSDi. But history
followed another track: in 1991 a Finnish student, Linus Torvads, started to work on a UNIX-like kernel as a
hobby effort. This was an excellent match for the GNU project, a project started by Richard Stallman, that aimed to
reimplement UNIX under afree license. The GNU system was almost complete, but it did not have akernel. Torvalds
did have akernel, and soon the first GNU based operating systems with a Linux kernel were developed.

1.2. The current state of UNIX

Shortly after the acquisition of UNIX Novell sold it again. But they did not sell the UNIX business as one entity. The
source code was sold to the Santa Cruz Operation (SCO), and the UNI X trademark wastransferred to The Open Group.
A product may carry the UNIX trademark if it complies with the Single UNIX Specification (SUS), and is certified by
The Open Group. Some Open Source operating systems are probably almost compliant with one of the (older) SUS
standards, but the certification procedure is simply to expensive to be worthwhile. We usually refer to these operating

systems as UNIX-like operating systems. The NetBSD website describes the trademark problem pretty well L

If something looks like a duck, walks like a duck, and quacks like a duck, what isit? The answer,
of course, depends on whether or not the name “duck'’ is a trademark! If it is, then the closest that
something can get, without permission of the owner of the trademark, is “duck-like.’

When this book was written there were three dominant strains of UNIX-like operating systems:

* GNU/Linux: the GNU operating system with the Linux kernel.

1 http://www.netbsd.org/Misc/call-it-a-duck.html

http://www.netbsd.org/Misc/call-it-a-duck.html

2 A guide to modern UNIX systems

» BSD: operating systemsthat are derived from the Berkeley Software Distribution (BSD).

» Solaris: aSystem V derivate that is developed by Sun Microsystems.

1.3. UNIX philosophy

UNIX isone of the longest lasting operating systems that is in active use. Its basic principles did not change over the
last thirty years, and made it widely loved. Doug Mcllroy summarized the UNIX philosophy in three simple rules:

» Write programs that do one thing and do it well.
 Write programs to work together.
» Write programs to handle text streams, because that is a universal interface.

Even if you don't intend to write UNIX programs, there rules can mean alot to you as a user of a UNIX-like system.
Once you get to know a few simple UNIX commands, and learn how to combine them, you will be able to solve
problems easily. Keep this in mind while you learn UNIX, and try get a feeling of how you can reduce complex
problems to simple combined operations.

1.4. Free and Open Source software

As | mentioned earlier, both GNU/Linux and various BSD systems are free software. In this context, the word free
means freedom, not gratis. The Free Software Foundation has defined four kinds of freedom that free software should

have?:

» The freedom to run the program, for any purpose.

» The freedom to study how a program works, and adapt it to your needs.

» The freedom to redistribute copies of the program.

» The freedom improve the program, and rel ease your improvements to the public.

Withthislistitisfairly easy to find out which software can be called “free software”. However, the term free software
isnot trademarked, and no procedure existed to check the freedom of alicense centrally. Besidesthat, the free software
paradigm was and isfairly ideological. Thisformed a barrier for enterprises to adopt free software.

The Open Source Initiative (OSI) was established in 1998 to solve both theimage and the licensing problems. The OSI
researches new free softwarelicenses, and verifiesthat they conform to the Open Source Definition. After certification,
alicenseisconsidered an Open Sourcelicense, meaning that it protectsthe freedoms of theuser. The OSI al so advocates
usage and development of Open Source software, mostly on pragmatical grounds.

2 http://www.gnu.org/phil osophy/free-sw.html

http://www.gnu.org/philosophy/free-sw.html

Chapter 2. A whirlwind tour through
UNIX

This chapter provides a short tour through UNIX. Do not worry if you do not understand all concepts yet. They will
be explained in later chapters. The purpose of this chapter isto get you acquainted with UNIX, so that you will know
your way around a bit.

2.1. Logging in

UNIX is a multi-user operating system. This means that more than one user can work simultaneously on a UNIX
system. Each user has his own user account that is protected by apassword. When you start to work on aUNIX system,
you will be asked to identify yourself. This identification process is called logging in. The login prompt will look
comparable to this:

Cent OS rel ease 4.2 (Final)
Kernel 2.6.9-22.0.2.EL on an i686

m ndbender | ogi n:

Y ou can often deduct information about a particular UNIX system from the login prompt. For instance, in the example
listed above you can see that the system is running CentOS on ai686 machine. Thelogin prompt also displaysthefirst
component of the hostname of the system (mindbender). Some UNIX systemswill also display the device name of the
current terminal. You can log in by typing the username, and pressing the return key. The system will then ask your
password, which you can enter in the same manner. On most UNIX systems the system does not provide any visual
feedback when you typethe password. Thisisdoneto prevent that an eavesdropper can seethelength of your password.

If you usethe X Window System, you can open up ashell by starting aterminal emulator likexterm, GNOME Terminal
or Konsole.

2.2. Finding your way around

If the login was successful, the shell prompt will be shown. The shell prompt is usually displayed as adollar sign ($)
for normal users, and as a hash mark (#) for the root user. Y ou can interact with the system by typing commandsin
the shell. A command is executed when you press the return key. UNIX commands are relatively easy to learn; you
will seethat they are often abbreviations of what they do.

Like most other operating systems, UNIX uses directoriesto store and categorize files. All UNIX processes, including
the shell have a working directory. This is the directory to which relative path names are related. For example, if
you specify that a command should open wor k/ f i nances/ summary. t xt , the command will open / horre/
dani el / wor k/ fi nances/ sunmary. t xt when/ hone/ dani el isthe current working directory.

UNIX has a simple command to print the current working directory, Is. It is simple to use:

$ pwd
/ home/ dani el

4 A guide to modern UNIX systems

When you just logged in, and did not change the working directory, the working directory will aways be of the form
/ hone/ <user nanme>. Most users on a UNIX system have their own directory on the system where they can store
files, named the Ihome directory. The home directory is the working directory after auser logged in.

The current working directory can be changed with the Is command. The new working directory can be specified as
aparameter. For example:

$ cd /

This will change the current working directory to / this directory is also called the root directory, because it is the
parent directory of all other directories. Y ou can confirm that the working directory hasindeed changed with the pwd
command:

$ pwd
/

Without seeing what files and directories are available, browsing the filesystem can be daunting (although we will see
later how you can use the shell to complete path and filenames automatically). UNIX provides the Is command to list
files and directories. If Is is used without any arguments it will show the files and directories that are in the current
working directory. For example:

$1Is

bi n | ost +f ound shin
boot medi a sel i nux
dev m sc Srv

etc mmt sys
hone opt t np
initrd proc usr

lib r oot var

Y ou can also add a directory name as a parameter to show the contents of that directory. For instance:

$ Is var

account | ocal preserve
cache | ock run
crash | og sSpoo

db mai | t np
enpty naned t ux

gdm nis VWY

lib opt yp

The problem with this output is that there is no visual way to separate files and directories. This can be confusing if
you are not familiar with the filesystem yet. The - F option of Is can assist here; this option adds a visual indication
for various different file and directory types. The following table lists the indication characters as they are specified
in the SUSv3 standard. Most modern UNIX operating systems adhere to these character conventions.

Chapter 2. A whirlwind tour through UNIX 5

Table2.1. Visual indicatorsfor Is-F

Character Entry type

/ Directory

* Executablefile
| FIFO

@ Symbolic link

Many GNU/Linux distributions implicitly use this option, as well as coloring for different file types (which can be
very disturbing). The following example liststhe/ directory on a CentOS Linux system:

$1s -F

account/ | ocal / preserve/
cache/ | ock/ run/
crash/ | og/ spool /
db/ mai | @ t mp/
enpty/ nanmed/ t ux/

gdni ni s/ VW

lib/ opt/ yp/

Asyou can see, there is one symbolic link (rmai |), al other entries are directories.

We have now looked at the basic commands that are needed to move around in the filesystem tree. If you ended up
in a directory other than your home directory while experimenting with these commands, you can go to your home
directory by executing cd without any parameters.

2.3. Working with files

Traditionally everythingin UNIX has been represented as afile. Even hardware devices are represented as special files
inthe/ dev directory. Because of its file-centric nature, UNIX has alot of utilities to deal with files. In this section
we will scratch the surface of some widely used file utilities.

Most filesin UNIX aretext files, but there are also many kinds of binary or specia files. The file command can help
you finding out of what kind aparticular fileis. The |s command that was described earlier is an executable binary file
which isstored inthe/ bi n directory. Thisisagood candidate for trying out file:

$ file /bin/ls
/bin/ls: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV),
for GNU Linux 2.2.5, dynamically |Iinked (uses shared |ibs), stripped

The output shows that / bi n/ | s is an executable file. If you use file to identify / dev/ nul | , it will tell you that
it isacharacter device:

$ file /dev/null>
/dev/null: character special (1/3)

If you have atext file you can print its contents to the screen with cat by providing the text file as a parameter:

6 A guide to modern UNIX systems

$ cat hello.txt>
Hel | o worl d!

cat isavery simple, but versatile utility, that can be used for alot more than just listing afile. cat will be described
in more detail later in this book.

If you have atext file with more lines than what will fit on atext screen, or in atermina emulator window, the text of
afilewill scroll too fast when you use cat to display afile. We can browse the text at our own pace with a so-called
paginator likemore. Y ou can use mor e by sending the output of the cat command to mor e. Such aconnection between
two programsis named a pipe, and can be made with avertical bar (“|"):

$ cat large_file.txt | nore

In this case making a pipe is not really necessary, because you can also specify the file as a parameter to more. But
the use of pipeswill prove very useful in your daily shell usage.

Y ou can also use cat to create simpletext files. Let'suseit to create asimplefilewith book titlesin your homedirectory:

$ cat > ~/books.txt << EOF
Alice in wonderl and

War and peace

Brave new worl d

EOF>

Thiscommand will writeevery linetothefile~/ books. t xt , until it encountersalinethat containsthe EOF character
string. Thetilde character (~) isasymbol that represents your home directory. Y ou can verify that the file was created
with cat:

$ cat ~/books. txt
Alice in wonderl and
War and peace

Brave new worl d

2.4. Organizing files

Now that you can createfiles, it isagood timeto |ook how you can organize them better, by putting them in directories.
Let's create adirectory named books in your home directory. Y ou can do this with the mkdir command:

$ nkdir ~/books

Let's go to this directory, and move the books. t xt to this directory. Y ou can use the mv command to move files
(or directories), by specifying the source file as the first parameter, and the target directory as the second parameter.
In this case, you could execute the following two commands:

Chapter 2. A whirlwind tour through UNIX 7

$ cd ~/ books
$ mv ../books. txt

The second command may look abit mysterious, becauseit usestwo special symbols. Two dots(. .) refer to the parent
directory, asingle dot (.) refersto current directory. So, if the current directory was/ home/ dani el / books, two
dots will translate to / home/ dani el , and a single dot to / hone/ dani el / books. So, the second command is
equivalent to: mv /home/daniel/books.txt /home/daniel/books. The mv command is aso useful to renamefiles. Y ou
can do thisby using the current filename as the first argument, and the new filename as the second argument. Suppose
that you want to rename thebooks. t xt tol it erat ure. t xt, you can do thiswith:

$ mv books.txt literature.txt

Now that you can move files, you may be curious how you can copy files. UNIX systems provide the cp command
to copy files. The basic syntax of cp isidentical to mv, you can specify the current file as the first argument, and the
destination file or directory as the second argument. Y ou can use the mkdir and cp commands to make a backup copy
of your list of literature:

$ nkdir ~/ backup
$ cp literature.txt ~/ backup

Finally, you may want to delete afile or adirectory. Therm command removesthefilesthat are specified asarguments:

$1s

literature.old.txt Iliterature.txt novies.old.txt
$rmliterature.old.txt novies.old. txt

$1s

literature.txt

Y ou can also remove a directory by adding the - r as an argument, this will recursivily delete the files or directories
that are provided as an argument. Thismeansthat directories are removed, including all the files and subdirectoriesthat
adirectory holds. - r does not have a special meaning for files. In the following example, the ol dbooks directory
isremoved from the home directory:

$ rm-r ~/ol dbooks

2.5. Getting help

It will occasionally happen that you are looking for a specific command parameter. UNIX provides some facilities to
help you. First of al, many commands on GNU/Linux accept the - - hel p parameter. This parameter gives a short
summary of the parameters that a command accepts. For instance:

$ nkdir --help
Usage: nkdir [OPTION] DI RECTORY. ..
Create the DI RECTORY(ies), if they do not already exist.

8 A guide to modern UNIX systems

-Z, --context=CONTEXT (SELi nux) set security context to CONTEXT
Mandat ory argunments to |ong options are mandatory for short options too.
-m --nmode=MODE set permission node (as in chnod), not rwxrwxrwx - umask

-p, --parents no error if existing, make parent directories as needed
-v, --verbose print a nmessage for each created directory
--help di splay this help and exit

--version output version information and exit

Sometimes this does not provide enough information. The system also has manual pages for most commands. These
manual pages can be read with the man command:

$ man nkdir

2.6. Logging out

After you have finished working with a UNIX system, you should log out to make sure that nobody else can use your
account. Y ou can log out by closing the login shell with exit.

At this point you should be able to log in to a UNIX system, and finding your way around. Almost all chapters deal
with the UNIX shell; you can try the examples in these chapters by logging into a UNIX system.

Chapter 3. The shell

3.1. Introduction

In this chapter we will look at the traditional working environment of UNIX systems: the shell. The shell is an
interpreter that can be used interactively and non-interactively. When the shell is used non-interactively it functions
asasimple, but powerful scripting language. The shell constructs for scripting will be described in alater chapter. In
this chapter we will look at interactive use of the shell. An interactive shell can be used by a user to start programs.

Before we go any further, we have to warn you that most UNIX systems provide more than just one shell. There are
two shell flavors that have become popular over time, the Bourne shell and the C shell. In this book we will describe
Bourne shellsthat conform to the IEEE 1003.1 standard. The Bash (Bourne Again Shell) and ksh (Korn Shell) shells
conform well to these standards. So, it is agood idea to use one of these two shells. You can easily see what shell the
system is running by executing echo $SHEL L. Thisiswhat a Bash shell may report:

$ echo $SHELL
/ bi n/ bash

If you are using a different shell, you can change your default shell. Before setting a different shell, you have to
establish the full path of the shell. Y ou can do this with the which command. For example:

$ whi ch bash
/ bi n/ bash

$ whi ch ksh
/usr/ bin/ ksh

On this particular system, the full path to the bash shell is/ bi n/ bash, and to the ksh shell / usr / bi n/ ksh. With
thisinformation, and the chsh command you change the default shell. The following example will set the default shell
to bash:

$ chsh -s /bin/bash

Changi ng shell for daniel.
Passwor d:

Shel | changed.

The new shell will be activated after logging out from the current shell (with logout or exit), or by opening a new X
terminal window if you are running X11.

3.2. Executing commands

An interactive shell is used to start programs by executing commands. There are two kinds of commands that a shell
can start:

e Built-in commands: built-in commands are integrated in the shell. Commonly used built-in commands are: cd, fg,
bg, and jobs.

10 A guide to modern UNIX systems

» External commands: external commands are programs that are not part of the shell program, and are separately
stored on the filesystem. Commonly used external commands are: Is, cat, rm, and mkdir.

Asyou have seen in the examples from Chapter 2, A whirlwind tour through UNIX, all commands are executed with
the same syntax:

conmandnane [argunentl argument2 ... argunentn]

The number of argumentsis arbitrary, and are aways passed to the command. The command can decide what it does
with these arguments.

All built-in commands can always be executed, because they are part of the shell. External commands can be executed
by namewhen the program isin the search path of the shell. Otherwise, you will haveto specify the path to the program.
The search path of the shell is stored in avariable named PATH. A variable is anamed piece of memory, of which the
contents can be changed. We can see the contents of the PATH variable in the following manner:

$ echo $PATH
/usr/ kerberos/bin:/usr/local/bin:/usr/bin:/bin:/usr/X11R6/bi n:/hone/ dani el / bin

The directory pathsin the PATH variable are separated with the colon (:) character. Y ou can use the which command
to check whether a given command is in the current shell path. You can do this by providing the command as an
argument to which. For example:

$ which pwd

/ bi n/ pwd

$ which sysstat

[usr/bin/which: no sysstat in (/usr/kerberos/bin:/usr/local/bin:/usr/bin:/bin:/usr/X1l1R6/bin:

If aprogram is not in the path, you can still run it by entering its absolute or relative path.

3.3. Moving around

It is often necessary to jump through various parts of aline, and to alter it, when you are editing larger commands. Both
bash and ksh have keyboard shortcuts for doing common operations. There are two shell modes, in which the shortcut
keys differ. These modes correspond with two popular editors for UNIX in their behavior. These editors are vi and
EMACS. In thisbook we will only cover the EMACS-like keystrokes. Y ou can check in which mode ashell isrunning
by printing the SHELLOPTSvariable. In the first example the shell is used in emacs mode, in the second example the
vi mode is used. Y ou identify the mode by looking for the emacs or vi strings in the contents of the variable.

$ echo $SHELLOPTS
br aceexpand: emacs: hashal | : hi st expand: hi story:interactive-conmrents: nonitor

$ echo $SHELLOPTS
br aceexpand: hashal | : hi st expand: hi story:interactive-coments: nonitor:vi

10

Chapter 3. The shell 11

If your shell is currently using the vi mode, you can switch to the emacs mode by setting the emacs option:
$ set -0 emmcs

With the emacs editing mode enabled, you can start using shortcuts. We will look at three kinds of shortcuts: character
editing shortcuts, word editing shortcuts, and line editing shortcuts. Later in this chapter, we will also have alook at
some shortcuts that are used to retrieve entries from the command history.

Character editing
Thefirst group of shortcutshave charactersastheir logic unit, meaning that they allow command line editing operations

on characters. Table 3.1, “Moving by character” provides an overview of the shortcuts that are used to move through
aline by character.

Table 3.1. Moving by character

Keys Description
Ctrl-b Move a character backwards.
Ctrl-f Move a character forward.

These shortcuts are simple, and don't do anything unexpected. Suppose that you have typed the following line:

find ~/nmusic -nane '*.o0gg" - -print

The cursor will be a the end. Y ou can now move to the start of the line by holding Ctrl-b:

find ~/music - -nane '*.o0gg" -print

Likewise, you can go back again to the end by holding Ctrl-f. Thereisan error in thisline, sincethereis one erroneous
dash. To remove this dash, you can use one of the character deletion shortcuts.

Table 3.2. Deleting characters

Keys Description
Citrl-h Delete a character before the
cursor. This has the same effect as

using the Backspace key on most
personal computers.

Ctrl-d Delete the character the cursor is
on.

Y ou can delete the dash in two manners. The first way isto move the cursor to the dash:

find ~/music - -nanme '*.o0gg" -print

11

12 A guide to modern UNIX systems

and then press Ctrl-d twice. This will delete the dash character, and the space that follows the dash:

find ~/nmusic -nane '*.o0gg" -print

The other approach is to position the cursor on the space after the dash:

find ~/music - -nane '*.o0gg" -print

and then press Ctrl-h twice to del ete the two preceding characters, namely the dash and the space before the dash. The
result will be the same, except that the cursor will not move:

find ~/music -nane '*.o0gg" -print

One of the nice features of most modern shellsisthat you can transpose (swap) characters. Thisis handy if you make a
typing error in which two characters are swapped. Table 3.3, “ Swapping characters’ lists the shortcut for transposing
characters.

Table 3.3. Swapping characters

Keys Description

Ctrl-t Swap (transpose) the characters
the cursor is on, and the character
beforethecursor. Thisishandy for
quickly correcting typing errors.

Suppose that you have typed the following command:
cat myreport.ttx

The extension contains atyping error if you intended to cat myr epor t . t xt . Thiscan be corrected with the character
transpose shortcut. First move to the second character of the pair of characters that are in the wrong order:

cat myreport.ttx
Y ou can then press Ctrl-t. The characters will be swapped, and the cursor will be put behind the swapped characters:

cat myreport.txt

Word editing

It if often tedious to move at character level. Fortunately the Korn and Bash shells can also move through lines at a
word level. Words are sequences of characters that are separated by a special character, such as a space. Table 3.4,
“Moving by word” summarizes the shortcuts that can be used to navigate through aline by word.

12

Chapter 3. The shell 13

Table 3.4. Moving by word

Keys Description

Escb Move back to the start of the
current or previous word.

Escf Move forward to the last character
of the current or next word.

As you can see the letters in these shortcuts are equal to those of moving forward and backwards by character. The
movement logic isabit curious. Moving forward puts the cursor to the end of the current word, not to the first character
of the next word as you may have predicted. Let'slook at a quick example. In the beginning the cursor is on the first
character of theline.

find ~/music -nane '*.o0gg" -print

Pressing Esc f will move the cursor behind the last character of the first word, which isfind in this case:

find ~/music -nane '*.o0gg" -print

Going forward once more will put the cursor behind ~/music:

find ~/nmusic -name '*.ogg" -print

Backwards movement putsthe cursor on the first character of the current word, or on thefirst character of the previous
word if the cursor is currently on the first character of a word. So, moving back one word in the previous example
will put the cursor on the first letter of “music”:

find ~/music -name '*.o0gg" -print

Deleting words works equal to moving by word, but the characters that are encountered are deleted. Table 3.5,
“Deleting words” lists the shortcuts that are used to delete words.

Table 3.5. Deleting words

Keys Description

Alt-d Delete the word, starting at the
current cursor position.

Alt-Backspace Delete every character from the
current cursor position to the
first character of a wordt that is
encountered. position

Finally, there are some shortcutsthat are useful to manipulatewords. These shortcutsarelistedin Table 3.6, “Modifying
words”.

13

14 A guide to modern UNIX systems

Table 3.6. Modifying words

Keys Description

Alt-t Swap (transpose) the current word
with the previous word.

Alt-u Make the word uppercase, starting
at the current cursor position.

Alt-| Make theword lowercase, starting
at the current cursor position.

Alt-c Capitalize the current word
character or the next word
character that is encountered.

Transposition swapswords. If normal wordsare used, it'sbehavior is predictable. For instance, if wehavethefollowing
line with the cursor on “two”

one two three
Word transposition will swap “two” and “one”:
two one three

But if there are any non-word characters, the shell will swap the word with the previous word while preserving the
order of non-word characters. Thisisvery handy for editing arguments to commands. Suppose that you made an error,
and mixed up the file extension you want to look for, and the print parameter:

find ~/music -name '*.print' -ogg

You can fix this by putting the cursor on the second faulty word, in this case “ogg”, and transposing the two words.
Thiswill give the result that we want:

find ~/music -nane '*.o0gg" -print

Finally, there are some shortcuts that change the capitalization of words. The Alt-u shortcut makes all characters
uppercase, starting at the current cursor position till the end of the word. So, if we have the lowercase name “alice”,
uppercasing the namewiththe cursor on“i” gives“alCE” . Alt-l hasthe same behavior, but changes| etterstolowercase.
So, using Alt-1 on “allCE” with the cursor on “I” will change the string to “alice”. Alt-c changes just the character the
cursor is on, or the next word character that is encountered, to uppercase. For instance, pressing Alt-c with the cursor
on“a in“alice” will yield “Alice”.

Line editing

The highest level we can edit isthe lineitself. Table 3.7, “Moving through lines’ lists the two movement shortcuts.

14

Chapter 3. The shell 15

Table 3.7. Moving through lines

Keys Description

Ctrl-a Move to the beginning of the
current line.

Ctrl-e Movetotheend of thecurrent line.

Suppose that the cursor is somewhere halfway aline:

find ~/music -nane '*.o0gg" - -print

Pressing Ctrl-e once will move the cursor to the end of theline:
find ~/music -nane '*.o0gg" - -print

Pressing Ctrl-awill move the cursor to the beginning of the line:
find ~/nmusic - -name '*.ogg -print

You can aso delete characters by line level. The shortcuts are listed in Table 3.8, “Deleting lines’. These shortcuts
work like movement, but deletes all characters that are encountered. Ctrl-k will delete the character the cursor is on,
but Ctrl-x Backspace will not. Moving to the beginning of the line with Ctrl-a, followed by Ctrl-k, is a fast trick to
remove aline completely.

Table 3.8. Deleting lines

Keys Description

Ctrl-k Delete al characters in the line,
starting at the cursor position.

Ctrl-x Backspace Delete all charactersin the line up
till the current cursor position.

3.4. Command history

Both the bash and ksh shellskeep ahistory of the commands that you have executed during the current session. Using
commands from the history can save alot of typing, even if the command needs slight ateration.

Y ou can show the command history with the built-in history command:

$ history
1 pwd
2 unane -a
3 history

15

16 A guide to modern UNIX systems

Y ou can execute an history item with the exclamation mark character (1), and the number of the item. For example,
to re-run uname -a, you could execute:

$11

Table 3.9. Shell history browsing

Keys Description

Ctrl-p/Up Move one step back in the
command history.

Ctrl-n/Down Move one step forward in the
command history.

Ctrl-r Reverse search the command
history.

Ctrl-s Search forward in the command
history.

Reading the history list everytime you want to pick something from the history is a bit tedious. Fortunately, there are
some quick shortcuts that make life a bit easier. The most important shortcuts are listed in Table 3.9, “Shell history
browsing”. The most basic movements are moving backward and forward. Pressing the Ctrl-p shortcut will show the
previous command that was executed. Pressing Ctrl-p the command that was executed before the previous command,
et cetera. Ctrl-n will do the reverse, and will show the next command in the history.

The two search shortcuts help you to browse through the history quickly. Ctrl-r searches backwards, thus starting at
the commands that were executed last, working up to the oldest command that is still in the history. Ctrl-s searches
forward, starting at the oldest commands in the history. Once you have pressed one of both shortcuts, you can start
typing apart of the command that you are searching. Asyou can see, the search isincremental, meaning that the result
will automatically be updated when you add characters. Once you have found the command that you were looking for,
you can press Enter to execute the command, or Esc to go back to the command line to edit the command.

3.5. Completion

One of the purposes of the shell is to provide functionality that helps you avoiding doing tedious work. One of the
nicest features that speeds up working with the shell is completion. Completion tries to guess what file, command, or
variable you are referring to when you call the completion functionality. This works threefold:

* |If the word being completed is a command, the shell will look up commands that start with the characters that you
have typed in the directories that are specified in the PATH variable.

* If the word being completed is afile or directory name, the shell will search for files that start with the characters
that you have typed in the current directory, or in an other directory if you use an absolute path.

* |f thework being completed isavariable name (meaning that it startswith the $ sign), the shell will look up variables
that start with the characters that you have typed.

How the completion is done, is dependend on what you try to complete. You can cal the shell completion by
pressing the Tab key after typing some characters. If only one possible completion was found, the shell will fill in this
completion. If there is more than one possible completion, the shell will fill in the completion up till the point that the
completions are equal. For instance, if thereisadirectory named r esour ces, and one named r esponses, typing
r<Tab> will fill in res. Pressing Tab two times more will show all possible completions.

16

Chapter 3. The shell 17

Let's look at some examples of filename completion. Suppose that we have three files in the current directory:
guestions. txt,resources. txt,andresponses. t xt. Now, suppose that you want to have alook at the
contents of quest i ons. t xt . This can easily be done without typing the whole filename, by typing

$ less ¢

Pressing Tab will complete the filename, and fills in the filename:

$ less questions.txt

That saved alot of typing! Now, what happens if we want to view r esponses. t xt . At first, you type

$lessr

And press Tab. Sincethere aretwo file namesthat start with the“r” character, the shell will fill in the shared characters
of both filenames:

$ less res

To see what possible completions there are, we can press Tab twice:

$ less res
resources.txt responses.txt

We can continue the completion by typing the next character, in this case “p”, and pressing tab:

$ |l ess resp<tab>
$ responses. t xt

Completion can be used in the same manner for commands and variable names. UNIX commands are often very short,
so completion is often not useful for entering commands. Notable exceptions are many programs that use a graphical
user interface. For instance, if wewant to completeto gnome-system-monitor, we could do thisin thefollowing steps:

$ gno<t ab>

Which, completes to gnome. It is usually a good idea to start off with three letters, because there are many program
namesthat start with ag or gn. Most programsthat are part of the GNOME desktop environment have their command
names start with gnome-, soitisagood ideato provide abit more context, and attempt to compl ete the command again:

$ gnome- s<t ab><t ab>
gnomne- sear ch-t ool gnome- sessi on-r enove gnomne- sound- properties

17

18 A guide to modern UNIX systems

gnome- sessi on gnomne- sessi on- save gnome- sound- r ecor der
gnome- sessi on- properties gnone- snproxy gnome- syst em noni t or

We are now down to a handful of choices. Adding y is enough to complete the command:

$ gnone- sy<t ab>
$ gnome- syst em noni t or

Asyou can seein these examples, it may take sometimeto get used to filename completion. But once you get afeeling
for it, it will save you from many keystrokes and potential typing errors.

3.6. Aliases

Shell users often use certain commands frequently. If these commands are tedious to type every time, you can make
aliases for these commands. For instance, | often want to have an overview of the Ogg files that are in my home
directory. This can be done with:

$ find ~ -name ' *. ogg'

Now, wouldn't it be simpler if this can just be done with a simple command, say oggs. This is where the dias
functionality of the shell comesin. An alias can be added with the alias command:

$ alias oggs="find ~ -nane '*.ogg" "
Now, let's give this newly created alias atry:

$ oggs
/ hone/ dani el / Musi ¢/ songl. ogg

Right, alias did its work. It is good to know that some UNIX systems have predefined aliases. You can see these
predefined, and your own aliases with the - p parameter of alias:

$ alias -p

alias I.="Is -d .* --color=tty’

alias Il="Is -1 --color=tty’

alias Is="Is --color=tty’

alias nc=". /usr/share/nt/bin/nc-w apper. sh’
alias oggs="find ~ -nane "\""'*.,0gg'\"'""’

alias vi='vim
alias which="alias | /usr/bin/which --tty-only --read-alias --show dot
--showtil de'

As you can see, there are some handy macros for vi, as well as some plumbing to make certain commands work
differently (e.g. executing vi will launch the vim editor).

18

Chapter 3. The shell 19

3.7. Executing shell commands upon shell
Invocation

It is often handy to execute some commands when the shell isinvoked. For instance, to set up aliases that you would
like to use, or to modify the PATH variable. The files that are executed depends on the shell that you use, but both
bash and ksh will execute/ et ¢/ profil e and~/. profi | e when alogin shell is started. Other shells that are
executed as achild of the login shell usually inherit settings that were made in alogin shell. bash also triesto execute
~/ . bashr c if the shell is not alogin shell. But Bash-specific initialization files should be used with care, because
they go against the principle of portability.

The initialization files are “shell scripts’. Shell scripts are files in which you can stash commands, and effectively
allows you to do simple programming. For now, it is enough to know that you can just add commands, like the alias
command that we have used above, or to set the default editing mode, as explained in Section 3.3, “Moving around”.

19

20

20

Chapter 4. Filesystem

Now that you have seen how to move around in the shell, it istime for more exiting stuff, the UNIX filesystem.

4.1. Some theory

Before we move on to look at practical filesystem operations, we are going to look at a more theoretical overview of
how filesystems on UNIX-like systems work. The various UNIX implementations and clones provide many different
filesystems, but all thesefilesystemsuse virtually the same semantics. These semanticsare provided through the Virtual
Filesystem (VFS) layer), giving ageneric layer for disk and network filesystems.

inodes, directories and data
Thefilesystem consists of two types of elements. dataand meta-data. The metadata describesthe actual datablocksthat

areon thedisk. Modern UNIX filesystems use information nodes (inodes) to provide store metadata. M ost filesystems
store the following datain their inodes:

Table4.1. Common inode fields

Field Description

mode Thefile permissions.

uid The user ID of the owner of the
file

gid The group ID of the group of the
file.

size Size of thefilein bytes.

ctime File creation time.

mtime Time of the last file modification.

links_count The number of links pointing to
thisinode.

i_block Pointers to data blocks

If you are not a UNIX afficiendo, these names will probably sound bogus to you, but we will clear them up in the
following sections. At any rate, you can probably deduct the relation between inodes and data from this table, and
specifically the i_block field: every inode has pointers to the data blocks that the inode provides information for.
Together, the inode and data blocks are the actual file on the filesystem.

Y ou may wonder by now where the names of files (and directories) reside, sincethereisno file namefield in theinode.
Actually, the names of the files are separated from the inode and data blocks, which allows you to do groovy stuff,
like giving the same file more than one name. The filenames are stored in so-called directory entries. These entries
specify afilename and the inode of the file. Since directories are also represented by inodes, a directory structure can
also be constructed in this manner.

We can simply show how this all works by illustrating what the kernel does when we execute the command cat
/home/daniel/note.txt

1. The system reads the inode of the/ directory, checksif the user is allowed to access thisinode, and reads the data
block to find the inode number of the home directory.

21

22 A guide to modern UNIX systems

2. The system reads the inode of the hone directory, checksif the user is allowed to access thisinode, and reads the
data block to find the inode number of thedani el directory.

3. The system reads the inode of the hone directory, checksif the user is allowed to access thisinode, and reads the
data block to find the inode number of thenot e. t xt file.

4. The system readstheinode of thenot i ce. t xt file, checksif the user is allowed to access thisinode, and returns
the data blocks to cat through the read() system call.

File permissions

As | have described earlier, UNIX is a multi-user system. This means that each user has his’her own files (that are
usualy located in the home directory). Besides that users can be members of a group, which may give the user
additional privileges.

Asyou have seen in the inode field table, every file has a owner and a group. Traditional UNIX access control gives
read, write, or executable permissions to the file owner, file group, and other users. These permissions are stored in
the mode field of theinode. The mode field represents the file permissions as afour digit octal number. Thefirst digit
represents stores some special options, the second digit stores the owner permissions, the third the group permissions,
and the fourth the permissions for other users. The permissions are established by digit by using or adding one of the
number in Table 4.2, “Meaning of numbersin the mode octet”

Table 4.2. Meaning of numbersin the mode octet

Number Meaning

1 Execute (x)
2 Write (w)
4 Read (r)

Now, supposethat afile has mode 0644, this meansthat the fileisreadable and writable by the owner (6), and readable
by the file group (4) and others (4).

Most users do not want to deal with octal numbers, so that is why many utilities can also deal with an alphabetic
representation of file permissions. The letters that are listed in Table 4.2, “Meaning of numbers in the mode octet”
between parentheses are used in this notation. In the following exampl e information about afile with 0644 permissions
is printed. The numbers are replaced by three rwx triplets (the first character can list special mode options).

$Is -l note.txt
-rwr--r-- 1 daniel daniel 5 Aug 28 19:39 note.txt

Over the yearsthesetraditional UNIX permissions have proven not to be sufficient in some cases. The POSIX 1003.1e
specification aimed to extend the UNIX access control model with Access Control Lists (ACLS). Unfortunately this
effort stalled, though some systems (like GNU/Linux) have implemented ACLs". Access control lists follow the same
semantics as normal file permissions, but give you the opportunity to add rwx triplets for additional users and groups.

The following example shows the access control list of afile. Asyou can see, the permissions ook like normal UNIX
permissions (the access rights for the user, group, and others are specified). But there is also an additional entry for
the user joe.

IAt the time of writi ng, ACLswere supported on ext2, ext3, and XFS filesystems

22

Chapter 4. Filesystem 23

user: :rwx
user:joe:r--
group::---
mask: :r--
other::---

To make matters even more complex (and sophisticated), some GNU/Linux systems add more fine-grained access
control through mandatory Access Control Frameworks (MAC) like SELinux and AppArmor. But these access control
frameworks are beyond the scope of this book.

Links

A directory entry that points to an inode is named a hard link. Most files are only linked once, but nothing holds you
from linking a file twice. This will increase the links_count field of the inode. Thisis a nice way for the system to
see which inodes and data blocks are free to use. If links_count is set to zero, the inode is not referred to anymore,
and can be reclaimed.

Figure4.1. Thestructureof ahard link

E filenamel :
i [2737963 | !
| ~—alinode 2737963
E filename?2 fL,.' links_count 2
.| 2737963 E

Hard links have two limitations. First of all, hard links can not interlink between filessystems, since they point to
inodes. Every filesystem hasitsown inodes and corresponding inode numbers. Besidesthat, most systems do not allow
you to create hard links to directories (as defined in the Single UNIX Specification version 3). Allowing creation of
hard linksto directories could produce directory loops, potentially leading deadlocks and filesystem inconsistencies. In
addition to that, most implementations of rm and rmdir do not know how to deal with such extradirectory hard links.

Symbolic links do not have these limitations, because they point to file names, rather than inodes. When the symbolic
link is used, the operating system will follow the path to that link. Symbolic links can also refer to afile that does not
exist, sinceit just contains a name. Such links are called dangling links.

23

24 A guide to modern UNIX systems

Figure4.2. The structur e of a symbolic link

Directory entries

i Hename ,.\;\ inodes | Data blocks |
L L2737903 = 2737963 1 > data | |
- [symlink | ; g 5
b (2739293 i - 2739293 —i—'-h- data | |
Note

If you ever get into system administration, it is good to be aware of the security implications of hard links. If
the/ home directory ison the same filesystem as any system hinaries, auser will be able to create hard links
to binaries. In the case that a vulnerable program is upgraded, the link in the user's home directory will keep
pointing to the old program binary, effectively giving the user continuing access to a vulnerable binary.

For this reason it is a good idea to put any directories that users can write to on different filesystems. In
practice, thismeansthat it isagood ideato put at least / horre and / t np on separate filesystems.

4.2. Analyzing files

Before jJumping going some more adventurous venues, we will start doing the occasional stuff with files. This section
will expand alittle upon whirlwind chapter, so most of it will seem familiar.

Listing files

One of the most common things that you will want to do isto list all or certain files. The Is command serves this
purpose very well. Using |s without any arguments will show the contents of the actual directory:

$1s
dns.txt network-hosts.txt papers

If you use a GNU/Linux distribution, you may aso see some fancy coloring based on the type of file. The standard
output is handy to skim through the contents of a directory, but if you want more information, you can use the - |
parameter. This provides a so-called long listing for each file:

$1s -l
total 36
-rwrwr-- 1 daniel daniel 12235 Sep 4 15:56 dns.txt

24

Chapter 4. Filesystem 25

-rwrwr-- 1 daniel daniel 7295 Sep 4 15:56 network-hosts.txt
drwxrwxr-x 2 daniel daniel 4096 Sep 4 15:55 papers

This givesalot more information about the three directory entries that we have found with Is. The first column shows
the file permissions. The line that shows the paper s entry starts with a “d”, meaning that this entry represents a
directory. The second column shows the number of hard links pointing to the inode that a directory entry pointsto. If
thisis higher than 1, there is some other filename for the same file. Directory entries usually have at least two hard
links, namely the link in the parent directory and the link in the directory itself (each directory hasa. entry, which
refers to the directory itself). The third and the fourth columns list the file owner and group respectively. The fifth
column contains the file size in bytes. The sixth column the last modification time and date of the file. And finally,
the last column shows the name of this entry.

Files that start with a period (.) will not be shown by most applications, including Is. Y ou can list these files too, by
adding the - a optiontos:

$1s -la

total 60

dr Wxr wWxr - x 3 dani el daniel 4096 Sep 11 10:01 .

drwx------ 88 daniel daniel 4096 Sep 11 10:01 ..

STW- WA - - 1 daniel daniel 12235 Sep 4 15:56 dns.txt

STW- WA - - 1 daniel daniel 7295 Sep 4 15:56 network-hosts. txt
dr Wxr wWxr - x 2 dani el daniel 4096 Sep 4 15:55 papers

STW- WA - - 1 dani el daniel 5 Sep 11 10:01 .settings

Asyou can see, three more entries have appeared. First of all, the. set t i ngs fileis now shown. Besides that you
can see two additional directory entries, . and . . . These represent the current directory and the parent directory
respectively.

Earlier in this chapter (the section called “inodes, directories and data’) we talked about inodes. The inode number
that a directory entry points to can be shown with the - i parameter. Suppose that | have created a hard link to the
inode that points to the same inode as dns. t xt , they should have the same inode number. The following s output
shows that thisis true:

$1s -i dns*
3162388 dns-newhardl i nk. t xt
3162388 dns. t xt

Determining the type of a file

Sometimes you will need some help to determine the type of afile. This is where the file utility becomes handy.
Supposethat | find afile named Hel | oWor | d. cl ass somewhere on my disk. | suppose that thisisafile that holds
Java bytecode, but we can use file to check this:

$ file Hell oworl d. cl ass
Hel | oworl d. cl ass: conpiled Java class data, version 49.0

That is definitely Java bytecode. file is quite smart, and handles most things you throw at it. For instance, you could
ask it to provide information about a device node:

25

26 A guide to modern UNIX systems

$ file /dev/zero
/dev/ zero: character special (1/5)

Or asymboalic link:

$ file /usr/X11R6/ bin/ X
/usr/ X11R6/bin/ X: synbolic link to "~ Xorg'

If you arerather interested in thefile/ usr / X11R6/ bi n/ Xlinksto, you can use the - L option of file:

$ file -L /usr/X11R6/ bin/ X
fusr/ X11R6/ bin/ X: setuid witable, executable, regular file, no read perm ssion

Y ou may wonder why file can determinethefiletyperelatively easy. Most files start of with aso-called magic number,
this is a unique number that tells programs that can read the file what kind of file it is. The file program uses a file
which describes many file types and their magic numbers. For instance, the magic file on my system contains the
following lines for Java compiled classfiles:

Java Byt eCode
From Larry Schwi mer (schwi m@s. st anf ord. edu)

0 bel ong Oxcaf ebabe conpi |l ed Java cl ass data
>6 beshort x version %.
>4 beshort x \ b%l

This entry says that if a file starts with a long (32-bit) hexadecimal magic number Oxcafebabe?, it is afile that holds
“compiled Java class data’. The short that follows determines the class file format version.

File integrity

While we will look at more advanced file integrity checking later, we will have a short look at the cksum utility.
cksum can calculate a cyclic redundancy check (CRC) for an input file. Thisis a mathematically sound method for
calculating a unique number for afile. Y ou can use this number to check whether afile is unchanged (for example,
after downloading afile from a server). Y ou can specify the file to calculate a CRC for as a parameter to cksum, and
cksum will print the CRC, thefile size in bytes, and the file name;

$ cksum nyfile
1817811752 22638 nyfile

Some systems also provide utilitiesfor cal culating checksums based on one-way hashes (for instance MD5 or SHA-1),
but these utilities are not standardized in the The Single UNIX Specification version 3, and not consistent across
different implementations.

2Yeah, you can be creative with magic numbers too!

26

Chapter 4. Filesystem 27

Viewing files

Since most files on UNIX systems are usually text files, they are easy to view from a character-based termina or
terminal emulator. The most primitive way of looking at the contents of afileis by using cat. cat readsfilesthat were
specified asaparameter line by line, and will write thelinesto the standard output. So, you can write the contents of the
filenot e. t xt to the terminal with cat note.txt. While some systems and most terminal emulators provide support
for scrolling, thisis not a practical way to view largefiles. Y ou can pipe the output of cat to the mor e paginator:

$ cat note.txt | nore
or let more read the file directly:
$ nore note. txt

The mor e paginator lets you scroll forward and backward through afile. Table 4.3, “more command keys’ provides
an overview of the most important keys that are used to control more

Table 4.3. more command keys

Key Description

i Scroll forward oneline.

k Scroll backwards one line.

f Scroll forward one screen full of
text.

b Scroll backwards one screen full
of text.

q Quit more.

g Jump to the beginning of thefile.

G Jump to the end of thefile.

/pattern Search for the regular expression
pattern.

n Search for the next match of
the previously specified regular
expression.

mletter Mark the current position in the
file with letter.

| etter Jump to the mark letter

The command keys that can be quantized can be prefixed by a number. For instance 11j scrolls forward eleven lines,
and 3n searches the third match of the previously specified regular expression.

Some UNIX-like systems (most notably GNU/Linux), provide an aternativeto mor e, named “less’ (asinlessismore).
Wewill not go into less here, but its basic useisidentical to more.

27

28 A guide to modern UNIX systems

File and directory sizes

The Is -l output that we have seen earlier provides information about the size of a file. While this usually provides
enough information about the size of files, you might want to gather information about collections of filesor directories.
Thisiswhere the du (1) command comesin. By default, du (1) prints the file size per directory. For example:

$ du ~/gconcord

72 / hone/ dani el / qconcord/ src
24 / hone/ dani el / qconcor d/ ui
132 / hone/ dani el / qconcord

The size units may differ per operating system. The Single UNIX Specification version 3 requires that by default file
sizes should be printed as 512 byte units. But various implementations, like GNU du use 1024 byte units. You can
explicitly specify that du (1) should use 1024 byte units by adding the - k flag:

$ du -k ~/qgconcord

72 / horre/ dani el / gconcord/ src
24 / horre/ dani el / gconcor d/ ui
132 / horre/ dani el / gconcor d

If you would also like to see per-file disk usage, you can add the - a flag:

$ du -k -a ~/qconcord

8 / horre/ dani el / gconcor d/ ChangeLog

8 / hone/ dani el / qconcor d/ src/ concor dancef orm h

8 / hone/ dani el / qconcord/ src/textfile.cpp

12 / hone/ dani el / qconcor d/ src/ concor dancenai nwi ndow. cpp
12 / hone/ dani el / qconcor d/ src/ concor dancef orm cpp

8 / hone/ dani el / qconcor d/ src/ concor dancenmai nwi ndow. h
8 / hone/ dani el / qconcor d/ src/ mai n. cpp

8 / hone/ dani el / qconcord/ src/textfile.h

72 / hone/ dani el / qconcord/ src

12 / hone/ dani el / qconcor d/ Makefil e

16 / hone/ dani el / qconcor d/ ui / concor dancef or nhase. u

24 / hone/ dani el / qconcor d/ u

8 / hone/ dani el / qconcor d/ gconcord. pro

132 / hone/ dani el / qconcord

Y ou can a so usethe name of afileor awildcard asaparameter. But thiswill not print the sizesof filesin subdirectories,
unless - a is used:

$ du -k -a ~/qconcord/*

8 / hone/ dani el / qconcor d/ ChangelLog

12 / hone/ dani el / qconcor d/ Makefil e

8 / hone/ dani el / qconcor d/ gconcor d. pro

8 / hone/ dani el / qconcor d/ src/ concor dancef orm h

8 / hone/ dani el / qconcord/ src/textfile.cpp

12 / hone/ dani el / qconcor d/ src/ concor dancemai nwi ndow. cpp

28

Chapter 4. Filesystem 29

12 / hone/ dani el / qconcor d/ src/ concor dancef orm cpp

8 / hone/ dani el / qconcor d/ src/ concor dancenmai nwi ndow. h
8 / hone/ dani el / qconcor d/ src/ mai n. cpp

8 / hone/ dani el / qconcord/ src/textfile.h

72 / hone/ dani el / qconcord/ src

16 / hone/ dani el / qconcor d/ ui / concor dancef or nbase. ui
24 / hone/ dani el / qconcor d/ ui

If you want to see the total sum of the disk usage of the files and subdirectories that a directory holds, usethe - s flag:

$ du -k -s ~/qgconcord
132 / hone/ dani el / qconcord

4.3. Working with directories

After having a bird's eye view of directories in the section called “inodes, directories and data’, we will have a look
at some directory-related commands.

Listing directories

Thels (1) command that we have looked at in the section called “Listing files’ can also be used to list directoriesin
various ways. As we have seen, the default Is (1) output includes directories, and directories can be identified using
the first output column of along listing:

$1s -1

total 36

-rwrwr-- 1 daniel daniel 12235 Sep 4 15:56 dns.txt
-rwrwr-- 1 daniel daniel 7295 Sep 4 15:56 network-hosts.txt

drwxrwxr-x 2 daniel daniel 4096 Sep 4 15:55 papers

If adirectory name, of if wildcardsare specified, Is(1) will list the contents of the directory, of the directoriesthat match
the wildcard. For example, if there is a directory paper s, Is paper* will list the contents of this directory paper .
Thisis often annoying if you would just like to see the matches, and not the contents of the matching directories. The
- d avoid that this recursion happens:

$1s -1d paper*
drwxrwxr-x 2 daniel daniel 4096 Sep 4 15:55 papers

You can aso recursively list the contents of adirectory, and its subdirectory with the - R parameter:

$1s -R
dns. txt network-hosts.txt papers

. [papers:
cs phil

29

30 A guide to modern UNIX systems

. I papers/cs:
ent r. pdf

. I paper s/ phil:
| ogi cs. pdf

Creating and removing directories

UNIX provides the mkdir (1) command to create directories. If arelative path is specified, the directory is created in
the current active directory. The basic syntax is very simple: mkdir <name>, for example:

$ nkdir nydir

By default, mkdir (1) only creates one directory level. So, if you use mkdir (1) to create nydi r/ mysubdi r, mkdir
(1) will fail if mydi r does not exist already. If you would like to create both directories at one, usethe - p parameter:

$ nkdir -p nydir/mysubdir

rmdir (1) removes a directory. Its behavior is comparable to mkdir (1) . rmdir mydir/mysubdir removes r ndi r
nydi r/ mysubdi r, whilermdir -p mydir/mysubdir removesnydi r / mysubdi r and then nydi r.

If a subdirectory that want to remove contains directory entries, rmdir (1) will fail. If you would like to remove a
directory, including all its contents, use the rm (1) command instead.

4.4. Managing files and directories
Copying

Files and directories can be copied with the cp (1) command. In its most basic syntax the source and the target file are
specified. The following example will makeacopy of fi | el namedfi | e2:
$cp filel file2

It is not surprising that relative and absolute paths do a so work:

$ cp filel sonedir/file2
$ cp filel /hone/joe/design_docurments/file2

Y ou can also specify adirectory as the second parameter. If thisisthe case, cp (1) will make a copy of the filein that
directory, giving it the same file name as the original file. If there is more than one parameter, the last parameter will
be used as the target directory. For instance

$cpfilel file2 sonedir

30

Chapter 4. Filesystem 31

will copy bothfil el andfil e2 tothedirectory somedi r. You can not copy multiple files to one file. Y ou will
have to use cat (1) instead:

$ cat filel file2 > conbined_file

You can also use cp (1) to copy directories, by adding the - R. This will recursively copy a directory and all its
subdirectories. If thetarget directory exists, the source directory or directorieswill be placed under the target directory.
If the target directory does not exist, it will be created if there is only one source directory.

$ cp -r nytree tree_copy
$ nkdir trees
$cp -r mytree trees

After executing these commands, there are two copies of thedirectory nyt r ee,t r ee_copy andt r ees/ nytr ee.
Trying to copy two directories to a nonexistent target directory will fail:

$ cp -R nytree nytree2 newdir
usage: cp [-R[-H]| -L | -P]] [-f | -i] [-pv] src target
cp [-R[-H]| -L | -PI] [-f | -i] [-pv] srcl ... srcN directory

Note

Traditionally, the - r has been available on many UNIX systems to recursively copy directories. However,
the behavior of this parameter can be implementation-dependent, and the Single UNIX Specification version
3 states that it may be removed in future versions of the standard.

When you are copying files recursively, it is a good idea to specify the behavior of what cp (1) should do when a
symbolic link is encountered explicitly, because the Single UNIX Specification version 3 does not specify how they
should be handled by default. If - P isused, symbolic links will not be followed, effectively copying the link itself. If
- Hisused, symbolic links specified as a parameter to cp (1) may be followed, depending on the type and content of the
file. If - L isused, symbolic links that were specified as a parameter to cp (1) and symbolic linksthat were encountered
while copying recursively may be followed, depending on the content of the file.

If you want to preserve the ownership, SGID/SUID bits, and the modification and access times of afile, you can use
the - p flag. This will try to preserve these properties in the file or directory copy. Good implementations of cp (1)
provide some additional protection as well - if the target file already exists, it may not be overwritten if the relevant
metadata could not be preserved.

Moving files and directories

The UNIX command for moving files, mv (1) , can move or renamefilesor directories. What actually happens depends
onthelocation of thefilesor directories. If the source and destination files or directories are on the same filesystem, mv
(1) usually just creates new hard links, effectively renaming thefiles or directories. If both are on different filesystems,
thefiles are actually copied, and the source files or directories are unlinked.

The syntax of mv (1) is comparableto cp (1) . The most basic syntax renamesfi |l el tofil e2:

31

32 A guide to modern UNIX systems

$mvfilel file2

The same syntax can be used for two directories as well, which will rename the directory given as the first parameter
to the second parameter.

When the last parameter is an existing directory, the file or directory that is specified as the first parameter, is copied
to that directory. In this case you can specify multiple files or directories as well. For instance:

$ targetdir
$ nv filel directoryl targetdir

This createsthe directory t ar get di r, and movesfi | el anddi r ect or y1 to thisdirectory.

Removing files and directories

Files and directories can be removed with the rm (1) command. This command unlinks files and directories. If there
are no other linksto afile, itsinode and disk blocks can be reclaimed for new files. Files can be removed by providing
the files that should be removed as a parameter to rm (1) . If the fileis not writable, rm (1) will ask for confirmation.
For instance, toremovefi |l el andfi | e2, you can execute:

$ rmfilel file2

If you have to remove alarge number of files that require a confirmation before they can be deleted, or if you want to
userm (1) to remove files from a script that will not be run on aterminal, add the - f parameter to override the use of
prompts. Filesthat are not writable, are deleted with the - f flag if the file ownership allowsthis. This parameter will
also suppress printing of errorsto stderr if afile that should be removed was not found.

Directories can be removed recursively as well with the - r parameter. rm (1) will traverse the directory structure,
unlinking and removing directories as they are encountered. The same semantics are used as when normal files are
removed, asfar asthe- f flagisconcerned. To giveashort example, you can recursively removeall filesand directories
inthe not es directory with:

$rm-r notes

Since rm (1) command uses the unlink (2) function, data blocks are not rewritten to an uninitialized state. The
information in data blocks is only overwritten when they are reallocated and used at a later time. To remove files
including their data blocks securely, some systems provide a shred (1) command that overwrites data blocks with
random data. But thisis not effective on many modern (journaling) filesystems, because they don't write datain place.

The unlink (1) commands provides a one on one implementation of the unlink (2) function. It isof relatively little use,
because it can not remove directories.

4.5. Permissions

Wetouched the subject of fileand directory permissionsin the section called “ File permissions’. In this section, wewill
look at the chown (1) and chmod (1) commands, that are used to set the file ownership and permissions respectively.
After that, we are going to look at a modern extension to permissions named Access Control Lists (ACLS).

32

Chapter 4. Filesystem 33

Changing the file ownership
Aswe have seen earlier, every file hasan owner (user) ID and agroup ID stored in theinode. The chown (1) command

can be used to set these fields. This can be done by the numeric IDs, or their names. For instance, to change the owner
of thefilenot e. t xt to john, and its group to staff, the following command is used:

$ chown john:staff note.txt

You can aso omit either components, to only set one of both fields. If you want to set the user name, you can also
omit the colon. So, the command above can be split up in two steps:

$ chown john note.txt
$ chown :staff note.txt

If you want to change the owner of adirectory, and all thefilesor directoriesit holds, you can add the - Rto chown (1) :
$ chown -R john:staff notes

If user and group nameswere specified, rather than | Ds, the names are converted by chown (1) . Thisconversion usually
relies on the system-wide password database. If you are operating on afilesystem that uses another password database
(e.g. if you mount aroot filesystem from another system for recovery), it is often useful to change file ownership by
the user or group ID. In this manner, you can keep the relevant user/group nameto ID mappings in tact. So, changing
the ownership of not e to UID 1000 and GUID 1000 is done in the following (predictable) manner:

$ chown 1000: 1000 not e. t xt

Changing the file permission bits

After reading the introduction to filesystem permissions in the section called “File permissions’, changing the
permission bitsthat are stored in theinode isfairly easy with the chmod (1) command. chmod (1) accepts both numeric
and symbolic representations of permissions. Representing the permissions of afilenumerically isvery handy, because
it allows setting all relevant permissions tersely. For instance:

$ chnod 0644 note. txt

Makenot e. t xt readable and writable for the owner of the file, and readable for the file group and others.
Symbolic permissions work with addition or subtraction of rights, and allow for relative changes of file permissions.
The syntax for symbolic permissionsis:

[ugo] [-+][rwxst]

The first component specifies the user classes to which the permission change applies (user, group or other). Multiple
characters of this component can be combined. The second component takes away rights (-), or adds rights (+). The

33

34 A guide to modern UNIX systems

third component is the access specifier (read, write, execute, set UID/GID on execution, sticky). Multiple components
can be specified for this component too. Let'slook at some examples to clear this up:

ug+rw # Gve read/wite rights to the file user and group
chnod go- x # Take away execute rights fromthe file group and others.
chnod ugo-wx # Disallow all user classes to wite to the file and to

execute the file.

These commands can be used in the following manner with chmod:

$ chown ug+rw note. t xt
$ chown go-x scriptl.sh
$ chown ugo-x script2.sh

Permissions of files and directories can be changed recursively with the - R. The following command makes the
directory not es world-readable, including its contents:

$ chnod -R ugo+r notes

Extra care should be taken with directories, because the x flag has a special meaning in a directory context. Users that
have execute rights on directories can access a directory. User that don't have execute rights on directories can not.
Because of this particular behavior, it is often easier to change the permissions of a directory structure and its files
with help of thefind (1) command .

There are a few extra permission bits that can be set that have a special meaning. The SUID and SGID are the most
interesting bits of these extra bits. These bits change the active user ID or group ID to that of the owner or group of
the file when the file is executed. The su(1) command is a good example of afile that usually has the SUID bit set:

$1s -1 /bin/su
-rwsr-xr-x 1 root root 60772 Aug 13 12:26 /bin/su

This meansthat the su command runs as the user root when it is executed. The SUID bit can be set with the s modifier.
For instance, if the SUID bit was not set on/ bi n/ su this could be done with:

$ chnod u+s /bin/su

Note

Please be aware that the SUID and SGID bits have security implications. If a program with these bits set
contain abug, it may be exploited to get privileges of thefile owner or group. For thisreason it isgood manner
to keep the number of files with the SUID and SGID bits set to an absolute minimum.

The sticky hit is also interesting when it comes to directory. It disallows users to rename of unlink files that they do
not own, in directories that they do have write access to. Thisis usually used on world-writeable directories, like the
temporary directory (/ t np) on many UNIX systems. The sticky tag can be set with the t modifier:

34

Chapter 4. Filesystem 35

$ chrod g+t /tnp

File creation mask

The question that remains iswhat initial permissions are used when afile is created. This depends on two factors: the
mode flag that was passed to the open(2) system call, that is used to create afile, and the active file creation mask. The
file creation mask can be represented as an octal number. The effective permissionsfor creating the file are determined
as mode & ~mask. Or, if represented in an octal fashion, you can substract the digits of the mask from the mode. For
instance, if afileis created with permissions 0666 (readable and writable by the file user, file group, and others), and
the effective file creation mask is 0022, the effective file permission will be 0644. Let's look at anothere example.
Suppose that files are still created with 0666 permissions, and you are more paranoid, and want to take away all read
and write permissions for thefile group and others. This means you have to set the fil e creation mask to 0066, because
substracting 0066 from 0666 yields 0600

The effective file creation mask can be queried and set with the umask command, that is normally a built-in shell
command. The effective mask can be printed by running umask without any parameters:

$ umask
0002

The mask can be set by giving the octal mask number as a parameter. For instance:
$ unmask 0066
We can verify that this works by creating an empty file:

$ touch test
$1s -1 test
SrTW------ 1 daniel daniel 0 Oct 24 00:10 test?2

Access Control Lists

Access Control lists (ACLS) are an extension to traditional UNIX file permissions, that allow for more fine-grained
access control. Most systems that support filesystem ACLs implement them as they were specified in the POSIX.1e
and POSIX.2c draft specifications. Notable UNIX and UNIX-like systems that implement ACLs according to this
draft are FreeBSD, Solaris, and Linux.

Aswe have seen in the section called “File permissions” access control lists allows you to use read, write and execute
triplets for additional users or groups. In contrast to the traditional file permissions, additional access control lists are
note stored directly in the node, but in extended attributesthat are associated with files. Two thing to be aware of when
you use access control listsisthat not all systems support them, and not all programs support them.

Reading access control lists

On most systems that support ACLS, Is uses a visual indicator to show that there are ACLs associated with afile.
For example:

35

36 A guide to modern UNIX systems

$1s -1 index.htm
SrTWr----- + 1 dani el daniel 3254 2006-10-31 17:11 i ndex. htni

As you can see, the permissions column shows an additional plus (+) sign. The permission bits do not quite act like
you expect them to be. We will get to that in aminute.

The ACLsfor afile can be queried with the getfacl command:

$ getfacl index.htnl
file: index.htm
owner: dani el

group: daniel
user::rw

group::---

group: ww«data:r--
mask: :r--

other::---

Most lines can beinterpreted very easily: the file user has read/write permissions, the file group no permissions, users
of the group www-data have read permissions, and other users have no permissions. But why does the group entry
list no permissions for the file group, while |s does? The secret is that if there is a mask entry, |Is displays the value
of the mask, rather than the file group permissions.

The mask entry is used to restrict all list entries with the exception of that of the file user, and that for other users. It
is best to memorize the following rules for interpreting ACLSs:

e Theuser:: entry permissions correspond with the permissions of the file owner.

e The group:: entry permissions correspond with the permissions of the file group, unless there is a mask:: entry.
If there is a mask:: entry, the permissions of the group correspond to the group entry with the the mask entry as
the maximum of allowed permissions (meaning that the group restrictions can be more restrictive, but not more
permissive).

e The permissions of other users and groups correspond to their user: and group: entries, with the value of mask::
as their maximum permissions.

The second and third rules can clearly be observed if there us a user or group that has more rights than the mask for
thefile:

$ getfacl links.htni
file: links.htm
owner: dani el

group: daniel

user::rw
group: :rw #effective:r--
group: www\« dat a: rw #effective:r--
mask::r--
other::---

36

Chapter 4. Filesystem 37

Although read and write permissions are specified for the file and www-data groups, both groups will effectively only
have read permission, because thisis the maximal permission that the mask allows.

Another aspect to pay attention to isthe handling of ACLson directories. Accesscontrol listscan be added to directories
to govern access, but directories can also have default ACLs which specify the initial ACLs for files and directories
created under that directory.

Suppose that the directory r epor t s hasthe following ACL:

$ getfacl reports
file: reports

owner: dani el

group: daniel
user::rwx

group: :r-x
group: ww\« dat a: r - x
mask: :r-x
other::---

defaul t:user::rwx
defaul t:group::r-x
def aul t: group: ww« dat a: r - x
defaul t: mask: :r-x
default:other::---

New files that are created in ther epor t s directory get a ACL based on the entries that have default; as a prefix.
For example:

$ touch reports/test
$ getfacl reports/test
file: reports/test
owner: dani el

group: daniel

user::rw
group::r-x #effective:r--
group: ww\« dat a: r - x #effective:r--
mask: :r--
other::---

As you can see, the default ACL was copied. The execute hit is removed from the mask, because the new file was
not created with execute permissions.

Creating access control lists

The ACL for afile or directory can be changed with the setfacl program. Unfortunately, the usage of this program
highly depends on the system that is being used. To add to that confusion, at least one important flag (- d) has a
different meanings on different systems. One can only hope that this command will get standardized.

Dueto these differences, wewill only havealook at the setfacl implementationsof Solaris, FreeBSD, and GNU/Linux.
Table 4.4, “ System-specific setfacl flags’ contains an overview of all important flags.

37

38 A guide to modern UNIX systems

Table 4.4. System-specific setfacl flags

Operation FreeBSD Linux Solaris

Set entries, |Not supported |- - set -S

removing all old

entries

Modify entries |- m -m -m

Modify default|-d -d Use default:
ACL entries prefix

Delete entry - X - X -d

Remove al|-b -b Not supported
ACL entries

(except for the

three required

entries.

Recalculate Always Always -r

mask recal culated, recalculated,

unless -n isjunless -n is
used, or an mask | used, or an mask
entry expicitly|entry expicitly

specified. specified.
Use ACL |- M (modify) or|- M (modify), - |-f
specification - X (delete) X (delete), or - -
from afile restore
Recursive Not supported |- R Not supported
modification of
ACLs

Aswe have seen in the previous section, entries can be specified for users and groups, by using the following syntax:
user/group: name: permissions. Permissions can be specified as atriplet by using the letters r (read), w (write), or x
(execute). A dash (-) should be used for permissions that you do not want to give to the user or group, since Solaris
requiresthis. If you want to disallow access completely, you can use the --- triplet.

The specification for other users, and the mask differs per system. Solaris requires one colon between other/mask
and the permissions, for instance: other:r-x. FreeBSD requires the use of two colons, for example: other::r-x. On
GNU/Linux, both syntaxes are allowed.

Modifying ACL entries

The simplest operation is to modify an ACL entry. Thiswill create a new entry if the entry does not exist yet. Entries
can be modified on Solaris, FreeBSD and GNU/Linux with the - m For instance, suppose that we want to give the
group friend read and write access to thefiler eport . t xt . This can be done one al three systems with:

$ setfacl -mgroup:friends:rw report.txt

If welook at the resulting ACL, the difference in the default behavior of FreeBSD and GNU/Linux becomes apparent.
Both FreeBSD and GNU/Linux recalculate the mask entry, setting it to the union of all group entries, and additional
user entries:

38

Chapter 4. Filesystem 39

$ getfacl report.txt
file: report.txt
owner: dani el

group: daniel
user::rw

group: :r--

group: friends: rw
mask: :rw

other::r--

While Solaris just creates the mask entry (based on the file group permissions), but does not touch it otherwise:

$ getfacl report.txt
file: report.txt
owner: dani el

group: other

user::rw
group::r-- #effective:r--

group: friends: rw #effective:r--
mask::r--

other::r--

The default mask isonly recalculated if the - r flag is used:

$ setfacl -r -mgroup:friends:rw report.txt
$ getfacl report.txt

file: report.txt

owner: dani el

group: other

user::rw
group::r-- #effective:r--

group: friends: rw #effective: rw
mask: : rw

other::r--

On all three systems, you can combine multiple ACL entries by separating them with acomma character. For instance:

$ setfacl -mgroup:friends:rw,group:foes:--- report.txt

Removing ACL entries

An entry can be removed with the - x flag on FreeBSD and GNU/Linux:
$ setfacl -x group:friends: report.txt

On Solaris, the - d flag is used instead:

On Solaris and GNU/Linux the leading colon (;) can be omitted. FreeBSD's setfacl requires the use of the colon.

39

40 A guide to modern UNIX systems

$ setfacl -d group:friends: report.txt

Making a new ACL

Both Solaris and GNU/Linux provide aflag to set new permissions for afile, clearing all existing entries, except for
the three required entries. These flags are - s and - - set respectively. On both systems, it is required that the file
user, group and other entries are also specified. Solaris also requires that a mask entry is specified. For instance, on
GNU/Linux, you could use:

$ setfacl --set user::rw,group::r--,other:---,group:friends:rwx report.txt

FreeBSD does not provide such option, but it can be emulated by combining the - b flag, which clearsall entries except
for the three required entries, and the - mflag. This aso works on GNU/Linux. For instance:

$ setfacl -b -mgroup:friends:rw report.txt

Setting a default ACL

As we have seen in the section called “Access Control Lists’, directories can have default ACL entries that specify
what permissions should be used for files and directories that are created below that directory. Both FreeBSD and
GNU/Linux use the - d flag to operate on default entries:

$ setfacl -d -mgroup:friends:rwx reports
$ getfacl reports

file: reports

owner: dani el

group: daniel

user: :rwx

group::r-x

other::r-x

defaul t:user::rwx
defaul t: group::r-x

def aul t: group: friends: rwx
def aul t: mask: : rwx
default:other::r-x

Default entries are set on Solaris by adding the default: prefix. Default entries for the user, group, and other are not
automatically generated, so you will have to specify them explicitly. For instance:

$ setfacl -mdefault:user::rwx,default:group::rwx, default:other:rwx, default: mask: rwx, defaul t:

Using an ACL from a reference file

All three systems provide options to use afile as the input for ACL entries. An input file follows the same syntax as
specifying entries as a parameter to setfacl, but the entries are separated by newlines, rather than by commas. Thisis
very useful, because you can use the ACL for an existing file as areference:

40

Chapter 4. Filesystem 41

$ getfacl report.txt > ref

Both FreeBSD and GNU/Linux provide the - Mto modify the ACL for afile by reading the entries from afile. So, if
we have afilenamedr eport 2. t xt , we could modify the ACL for this file with the entries from r ef with:

$ setfacl -Mref report2.txt

If youwould liketo start with aclean ACL, and add the entriesfromr ef , you can add the - b flag that we encountered
earlier:

$ setfacl -b -Mref report2.txt

Of coursg, it is not necessary to use thisinterim file. We can directly pipe the output from getfacl to setfacl, by using
the symbolic name for the standard input (-), rather than the name of afile:

$ getfacl report.txt | setfacl -b -M- report2.txt

On GNU/Linux and FreeBSD aso provides the - X flag to remove permissions from a file. This follows the same
syntax as the - x flag, with commas replaced by newlines.

setfacl on Solaris provides the - f flag to read from afile. This flag is comparable with the - s flag, it requires that
the user, group, mask, and other entries are included.

The - f parameter can be used to read both from a file or from the standard input. The following example uses the
filer ef and the output of getfacl respectively:

$ setfacl -f ref report2. txt
$ getfacl report.txt | setfacl -f - test

4.6. Finding files
find

The find command is without doubt the most comprehensive utility to find files on UNIX systems. Besides that it
worksin asimple and predictable way: find will traverse the directory tree or trees that are specified as a parameter
to find. Besides that a user can specify an expression that will be evaluated for each file and directory. The name of
afile or directory will be printed if the expression evaluates to true. The first argument that starts with a dash (-),
exclamation mark (!, or an opening parenthesis ((, signifies the start of the expression. The expression can consist of
various operands. To wrap it up, the syntax of find is: find paths expression.

The simplest use of find is to use no expression. Since this matches every directory and subdirectory entry, all files
and directories will be printed. For instance:

41

42 A guide to modern UNIX systems

$ find .

./ economi c

./ econom c/report.txt
./ econom c/report2.txt
./ techni cal

./technical /report2.txt
./technical /report.txt

Y ou can also specify multiple directories:

$ find economi c technical
economi ¢

econom c/ report.txt
econom c/ report 2. t xt

t echni cal

techni cal /report2.txt
techni cal /report.txt

Operands that limit by object name or type

One common scenario for finding files or directories is to look them up by name. The -name operand can be used
to match objects that have a certain name, or match a particular wildcard. For instance, using the operand -name
'report.txt’ will only be true for files or directories with the namer eport . t xt . For example:

$ find econonic technical -nane 'report.txt’
econom c/ report.txt
technical /report.txt

The same thing holds for wildcards:

$ find econonmic technical -nane '*2.txt'
econom c/ report 2. t xt
techni cal /report 2.t xt

Note

When using find you will want to pass the wildcard to find, rather than letting the shell expand it. So, make
sure that patterns are either quoted, or that wildcards are escaped.

It isalso possible to evaluate the type of the object with the -type ¢ operand, where c specifies the type to be matched.
Table 4.5, “ Parameters for the '-type' operand” lists the various object types that can be used.

42

Chapter 4. Filesystem 43

Table 4.5. Parametersfor the'-type operand

Parameter M eaning

b Block devicefile

c Character devicefile
d Directory

f Regular file

I Symbolic link

p FIFO

S Socket

So, for instance, if you would like to match directories, you could use the d parameter to -type operand:

$ find . -type d

./ econom ¢
./ techni cal

We will look at forming a complex expression at the end of this section about find, but at this moment it is handy to
know that you can make a boolean 'and' expression by specifying multiple operands. For instance operandl operand2
istrueif both operandl and operand? are true for the object that is being evaluated. So, you could combine the -name
and -type operands to find all directories that start with eco:

$ find . -name 'eco*' -type d
./ econom c

Operands that limit by object ownership or permissions

Besides matching objects by their name or type, you can also match them by their active permissions or the object
ownership. Thisis often useful to find files that have incorrect permissions or ownership.

The owner (user) or group of an object can be matched with respectively the -user username and -group groupname
variants. The name of a user or group will be interpreted as a user 1D or group ID of the name is decimal, and could
not be found on the system with getpwnam(3) or getgrnam(3). So, if you would like to match all objects of which joe
is the owner, you can use -user joe as an operand:

$ find . -user joe
./ secret/report. txt

Or to find al objects with the group friend as the file group:

$ find . -group friends
./ secret/report.txt

The operand for checking file permissions -permislesstrivial. Like the chmod command this operator can work with
octal and symbolic permission notations. Wewill start with looking at the octal notation. If an octal number is specified

43

44 A guide to modern UNIX systems

as a parameter to the -perm operand, it will match all objects that have exactly that permissions. For instance, -perm
0600 will match all objects that are only readable and writable by the user, and have no additional flags set:

$ find . -perm 0600
./ secret/report.txt

If adash isadded as a prefix to a number, it will match every object that has at least the bits set that are specified in
the octal number. A useful exampleisto find al files which have at least writable bits set for other users with -perm
-0002. This can help you to find device nodes or other objects with insecure permissions.

$ find /dev -perm-0002
/ dev/ nul

/ dev/ zero
/dev/ctty

/ dev/ random
/dev/fd/0
/dev/fd/ 1
/dev/fd/2

/ dev/ psnD

/ dev/ bpsnD
/ dev/ pt yp0

Note

Some device nodes have to be world-writable for a UNIX system to function correctly. For instance, the
/ dev/ nul | deviceisawayswritable.

The symbolic notation of -perm parameters uses the same notation as the chmod command. Symbolic permissionsare
built with a file mode where all bits are cleared, so it is never necessary to use a dash to take away rights. This also
prevents ambiguity that could arise with the dash prefix. Like the octal syntax, prefixing the permission with a dash
will match objects that have at |east the specified permission bits set. The use of symbolic names is quite predictable
- the following two commands repeat the previous examples with symbolic permissions:

$ find . -permu+rw
./ secret/report.txt

$ find /dev -perm -o+w
/ dev/ nul |

/ dev/ zero
/dev/ctty

/ dev/ random
/dev/fd/0
/dev/fd/1
/dev/fd/2

/ dev/ psnD

/ dev/ bpsnD

/ dev/ pt yp0O

Chapter 4. Filesystem 45

Operands that limit by object creation time

There are three operands that operate on timeintervals. The syntax of the operand is operand n, wherenisthetimein
days. All three operators cal culate atime deltain seconds that is divided by the the number of secondsin aday (86400),
discarding the remainder. So, if the deltais one day, operand 1 will match for the object. FreeBSD deviates from the
Single UNIX Specification in this respect, because it rounds times to the next full day, this can be an unwelcome trap
in scripts. The three operands are;

 -atime n - this operand evaluates to true if the initialization time of find minus the last access time of the object
equalston.

 -ctime n - this operand evaluates to true if the initialization time of find minus the time of the latest change in the
file status information equals to n.

* -mtimen - thisoperand evaluatesto trueif theinitialization time of find minusthelatest file changetime equalsto n.

So, these operands match if the latest access, change, modification respectively was n days ago. To give an example,
the following command shows all objectsin/ et ¢ that have been modified one day ago:

$ find /etc -ntinme 1
/etc

/ etc/ group

/ et c/ mast er. passwd
/etc/ spwd. db

/ et c/ passwd

/etc/ pwd. db

The plus or minus sign can be used as modifiers for the meaning of n. +n means more than n days, -n means less than
n days. So, to find all filesin/ et ¢ that were modified less than two days ago, you could execute:

$find /etc -minme -2
/etc

/et c/ network/run
/etc/network/run/ifstate
/etc/resol v. conf
/etc/default
/etc/default/local e

[...]

Another useful time-based operand is the -newer reffile operand. This matches all files that were modified later that
the file with filenamer ef f i | e. The followin example shows how you could use thisto list all files that have later
modification timesthan economi ¢/ report 2. t xt :

$ find . -newer econom c/report2.txt

./ techni cal

./technical /report2.txt
./technical /report.txt
./ secret

./ secret/report.txt

45

46 A guide to modern UNIX systems

Operands that affect tree traversal

Some operands affect the manner in which thefind command traversesthe tree. Thefirst of these operandsisthe -xdev
operand. -xdev preventsthat find decendsinto directoriesthat have adifferent device D, effectively avoiding traversa
of other filesystems. The directory to which the filesystem is mounted, is printed, because this operand always returns
true. A nice exampleisasystem where/ usr is mounted on a different filesystem than / . For instance, if we search
for directories with the name bin, this may yield the following result:

$ find / -name 'bin'" -type d
[usr/bin
/bin

But if we add -xdev/ usr / bi n isnot found, becauseit is on a different filesystem (and device):

$ find / -nane 'bin' -type d -xdev
/bin

The -depth operand modifies the order in which directories are evaluated. With -depth the contents of a directory are
evaluated first, and then the directory itself. This can be witnessed in the following example:

$ find . -depth

./ econoni c/ report.txt
./ economni c/ report 2. txt
./ economi c

./technical /report2.txt
./technical /report.txt
./ techni cal

Asyou can seeintheoutput, filesinthe ./economic directory isevaluated before. ,and. / econoni ¢/ report . t xt
before. / economi c. -depth aways evaluates to true.

Finally, the -prune operand causes find not to decend into a directory that is being evaluated. -prune is discarded if
the -depth operand is also used. -depth always evaluates to true.

Operands that execute external utilities

find becomesavery powerful tool when it iscombined with external utilities. This can be done with the -exec operand.
There are two syntaxes for the -exec operand. The first syntax is -exec utility arguments ;. The command utility will
be executed with the arguments that were specified for each object that is being evaluated. If any of the argumentsis
{}, these braces will be replaced by the file being evaluated. Thisis very handy, especially when we consider that, if
we use no additional expression syntax, operands will be evaluated from left to right. Let'slook at an example:

$ find . -perm 0666 -exec chnod 0644 {} \;

46

Chapter 4. Filesystem 47

The first operand returns true for files that have their permissions set to 0666. The second operand executes chmod
0644 filename for each file that isbeing evaluated. If you were wondering why this command is not executed for every
file, that isagood question. Like many other interpreters of expressions, find uses“ short-circuiting” . Because no other
operator was specified, thelogical and operator isautomatically is assumed between both operands. If thefirst operand
evaluates to false, it makes no sense to evaluate any further operands, because the complete expression will always
evaluate to false. So, the -exec operand will only be evaluated if the first operand is true. Another particularity is that
the semi-colon that closes the -exec is escaped, to prevent that the shell parsesit.

A nice thing about the -exec operator is that it evaluates to true if the command terminated sucessfully. So, you could
also use the -exec command to add additional conditions that are not represented by find operands. For instance, the
following command prints all objects ending with .txt that contain the string gross income:

$find . -name '*.txt' -exec grep -q 'gross income' {} \; -print
./ economi c/ report2.txt

The grep command will be covered lateron. But for the moment, it is enough to know that it can be used to match
text patterns. The -print operand prints the current object path. It is always used implicitly, except when the -exec or
-0k operands are used.

The second syntax of the -exec operand is -exec utility arguments {} +. This gathers a set of all matched object for
which the expression is true, and provides this set of files as an argument to the utility that was specified. The first
exampl e of the -exec operand can a so be written as:

$ find . -perm 0666 -exec chnod 0644 {} +

Thiswill execute the chmod command only once, with all filesfor which the expression istrue asits arguments. This
operand always returns true.

If a command executed by find returns a non-zero value (meaning that the execution of the command was not
succesful), find should also return a non-zero value.

Operators for building complex expressions

find provides some operators that can be combined to make more complex expressions:

Operators

(expr) Evaluatesto trueif expr evaluatesto true.

exprl [-a] expr2 Evaluatesto trueif both expr1 and expr2 aretrue. If -aisomitted, this operator isimplicitly
assumed.
find will use short-circuiting when this operator is evaluated: expr2 will not be evaluated
when exprl evaluates to false

exprl -o expr2 Evaluatesto trueif either or both exprl and expr2 are true.
find will use short-circuiting when this operator is evaluated: expr2 will not be evaluated
when exprl evaluates to true

I expr Negates expr. So, if expr evaluates to true, this expression will evaluate to false and vise

versa

47

48 A guide to modern UNIX systems

Since both the parentheses and exclamation mark characters are interpreted by most shells, they should usualy be
escaped.

The following example shows some operators in action. This command executes chmod for al files that either have
their permissions set to 0666 or 0664.

$find . \(-perm0666 -0 -perm 0664 \) -exec chnod 0644 {} \;

which

The which command is not part of the Single UNIX Specification version 3, but it is provided by most sysmtems.
which locates a command that isin the user's path (as set by the PATH environment variable), printing its full path.
Providing the name of acommand as its parameter will show the full path:

$ which I's
/bin/ls

Y ou can aso query the paths of multiple commands:

$ which |I's cat
/bin/ls
/ bi n/ cat

The handling of commandsthat could not be found isimplementati on-dependent. which on GNU/Linux and FreeBSD
returns a non-zero return value. Solaris which prints an error message, but always returns zero.

whereis

Both Linux and FreeBSD provide the whereis. This command searches binaries, manual pages and sources of a
command in some predefined places. For instance, the following command shows the path of the Is and the 1s(1)
manual page:

$ whereis Is
I's: /bin/ls /usr/share/ man/ manl/ls. 1.9z

locate

Some systems, like FreeBSD and GNU/Linux provide a locate that searches through a file database that can be
generated periodically with the updatedb command. Sinceit uses a prebuilt database of the filesystem, itisalot faster
than command, especially when directory entry information has not been cached yet. Though, the locate/lupdatedb
combo has some downsides:

» New filesare not part of the database until the next updatedb invocation.
* locate has no conception of permissions, so users may locate files that are normally hidden to them.

» A newer implementation, named slocate deals with permissions, but requires elevated privileges.

48

Chapter 4. Filesystem 49

With filesystems becoming faster, and by applying common sense when formulating find queries, locate does not
really seem worth the hassle. Of course, your mileage may vary. That said, the basic usage of locate islocate filename.
For example:

$ locate |ocate
/usr/bin/locate
/fusr/lib/locate
/fusr/lib/locatel/bigram
/fusr/libl/locatel/code
/fusr/lib/locate/frcode

[...]

4.7. Compression and archiving

Itisoften practical to condense aset of filesand directoriesin onefile- itiseasier to send, distribute or store somewhere.
Such files are called archives. For historical reasons, most UNIX-like systems provide at least three archiving tools:
tar, cpio, and pax. Of these, tar and cpio have their own archive formats (and variations thereof). Fortunately, the
newer pax program can deal with both cpio and tar archives, and some historical variations thereof.

In contrast to some other systems, the archiving tools of UNIX systems follow the “Write programs that do one
thing and do it well.”-philosophy, and let external programs handle compression of archives. The traditional UNIX
compression program, that is also described in the Single UNIX Specification version 3 is compr ess. Unfortunately,
this program uses the LZW compression algorithm, which was patented from 1983 to 2003%. This prompted the
GNU project to implement a file compressor that was patent-free. This program is named gzip, and uses the LZ77
compression algorithm and Huffman coding. gzip has become the dominant compression program. Many GNU/Linux
distributions do not even install compr ess by default, even now that the patent has expired. More recently, the bzip2
program was introduced, which uses a block-sorting compressor. bzip2 normally gives better compression rathes than
gzip at the cost of time.

This section will describe the compress, gzip, and bzip2 file compression programs, and the tar and pax archivers.

File compression

compress

compress is the compression utility specified by the Single UNIX Specification version 3. The author of this book
would recommend you to use the the widely used gzip or bzip2 tools instead.

If compr essisused without any parameters, it will read and compress data from stdin, and send the compressed output
to stdout. The following command will compress the sentence “Hello world.”, and storesthe resultin hel | 0. Z:

$ echo "Hello world." | conmpress > hello.Z

The uncompress command does the exact opposite of compress, and decompresses its input data. For example, you
can decompress the file that was just created:

$ unconpress < hello.Z

3http://en.wi kipedia.org/wiki/Lzw

49

50 A guide to modern UNIX systems

Hel | o worl d.

To compress a file, rather than data read from stdin, add the name of the file as an argument. compress stores
the compressed file in a file named after the origina file, with the suffix .Z appended. The origina file is
removed afterwards. The following example compresses al i ce_wonder | and. t xt, and stores the result as
al i ce_wonder | and. txt. Z:

$1s -l

total 164

-rwr--r-- 1 daniel daniel 163218 2005-03-05 20:21 alice_wonderl and.t xt
$ conpress alice_wonderl and. t xt

$1s -l

total 72

-rwr--r-- 1 daniel daniel 68263 2005-03-05 20:21 alice_wonderl and.txt.Z

Asyou can see, the original permissions, ownership, and modification and access time are retained.

In asimilar fashion, the file can be uncompressed with uncompress. uncompr ess creates an uncomressed file with
the .Z suffix removed, and removes the compressed file:

$ unconpress alice_wonderland.txt.Z

$1s -l

total 164

-rwr--r-- 1 daniel daniel 163218 2005-03-05 20:21 alice_wonderl and. t xt

And again, the original file properties (permissions, ownership, accesssmodification times) are retained.

If you would like to have information about the compression rate, you can add the - v to compr ess or uncompr ess.

$ conpress -v alice_wonderl and. t xt

alice_wonderland.txt: -- replaced with alice_wonderland.txt.Z Conpression: 58.17%
$ unconpress -v alice_wonderland. txt.Z

alice_wonderland.txt.Z: 58 2%-- replaced with alice_wonderl and. txt

Both compr ess and uncompr ess can write output to stdout, rather than afile. When the input datais read from stdin,
this is done automatically. Otherwise, the - ¢ option has to be added to do this. For example, we could read the
compressed version of Alice in Wonderland with:

$ unconpress -c alice_wonderland.txt.Z | nore

If thetarget file exists during compression or uncompression, and the processisrunning in theforeground, confirmation
from the user will be asked to overwrite the file. You can avoid this, and force overwriting the target file by adding
the- f option to compress or uncompr ess. When compr ess or uncompr essis not running in the foreground, and - f
is not used, it should abort exit with a non-zero return value if the target file already exists.

50

Chapter 5. Text processing

Text manipulation is one of the things that UNIX excels at, because it forms the heart of the UNIX philosophy, as
described in Section 1.3, “UNIX philosophy”. Most UNIX commands are simple programs that read data from the
standard input, performs some operation on the data, and sends the result to the program's standard output. These
programs basically act as an filters, that can be connected as a pipeline. This allows the user to put the UNIX tools to
uses that the writers never envisioned. In later chapters we will see how you can build simplefilters yourself.

This chapter describes some simple, but important, UNIX commands that can be used to manipulate text. After that,
we will dive into regular expressions, a sublanguage that can be used to match text patterns.

5.1. Simple text manipulation

Repeating what is said

The most simple text filter isthe cat, it does nothing else than sending the data from stdin to stdout:

$ echo "hello world" | cat
hello world

Another useful feature isthat you can let it send the contents of afile to the standard output:

$ cat file.txt
Hello, this is the content of file.txt

cat really lives up to its name when multiple files are added as arguments. Thiswill concatenate thefiles, in the sense
that it will send the contents of al filesto the standard output, in the same order as they were specified as an argument.
The following screen snippet demonstrates this:

$cat file.txt filel.txt file2. txt

Hello, this is the content of file.txt
Hello, this is the content of filel.txt
Hello, this is the content of file2. txt

Text statistics

The wc command provides statistics about atext file or text stream. Without any parameters, it will print the number
of lines, the number of words, and the number of bytes respectively. A word isdelimited by one white space character,
or a sequence of whitespace characters.

The following example shows the number of lines, words, and bytesin the canonical “Hello world!” example:

$ echo "Hello world!'" | wc
1 2 13

51

52 A guide to modern UNIX systems

If you would like to print just one of these components, you can use one of the - | (lines), - w (words), or - ¢ (bytes)
parameters. For instance, adding just the- | parameter will show the number of linesin afile:

$ wc -1 /usr/share/dict/words
235882 /usr/share/dict/words

Or, you can print additional fields by adding a parameter:

$ we -lc /usr/share/dict/words
235882 2493082 /usr/share/dict/words

Please note that, no matter the order in which the options were specified, the output order will always be the same
(lines, words, bytes).

Since - ¢ printsthe number bytes, this parameter may not represent the number of charactersthat atext holds, because
the character set in use maybe be wider than one byte. To this end, the - mparameter has been added which prints
the number of charactersin atext, independent of the character set. - ¢ and - mare substitutes, and can never be used
at the sametime.

The statistics that wc provides are more useful than they may seem on the surface. For example, the - | parameter is
often used asacounter for the output of acommand. Thisisconvenient, because many commands seperatelogical units
by anewline. Supposethat you would liketo count the number of filesinyour home directory having afilenameending
with . t xt . You could do this by combining find to find the relevant files and wc to count the number of occurences:

$ find ~ -name '*.txt' -type f | we -I

Manipulating characters

Thetr command can be used to do common character operations, like swapping characters, deleting characters, and
squeezing character sequences. Depending on the operation, one or two sets of characters should be specified. Besides
normal characters, there are some special character sequences that can be used:

\character This notation is used to specify characters that need escaping, most notably \n
(newline), \t (horizontal tab), and \\ (backslash).

character1-character? Implicitly insert al characters from characterl to character2. This notation should
be used with care, because it does not always give the expected result. For instance,
the sequence a-d may yield abed for the POSIX locale (language setting), but this
may not be true for other locales.

[:class] Match a predefined class of characters. All possible classes are shownin Table 5.1,
“tr character classes’.
[character*] Repeat character until the second set is as long as the first set of characters. This

notation can only be used in the second set.

[character*n] Repeat character n times.

52

Chapter 5. Text processing 53

Table5.1. tr character classes

Class M eaning

[:alnum:] All letters and numbers.

[:apha] Letters.

[:blank:] Horizontal whitespace (e.g. spaces
and tabs).

[entrl:] Control characters.

[:digit:] All digits (0-9).

[:graph:] All printable characters, except
whitespace.

[:lower:] Lowercase letters.

[:print:] All printable characters, including
horizontal whitespace, but
excluding vertical whitespace.

[:punct:] Punctuation characters.

[:spacel] All whitespace.

[:upper:] Uppercase | etters.

[:xdigit:] Hexadecimal digits (0-9, af).

Swapping characters

Thedefault operation of tr isto swap (trandate) characters. This meansthat the n-th character in thefirst set isreplaced
with the n-th character in the second set. For example, you can replace all €'s with i's and o's with a's with one tr
operation:

$ echo "Hello world!" | tr "eo' 'ia'
Hlla warld!

The behavior of tr is different per system when the second set is not as large as the first set. Solaris will not touch
characters that were specified in the first set that have no matching character in the second set, while GNU/Linux
and FreeBSD implicitly repeat the last character. So, if you want to use tr in a system-independent manner, explicitly
define what character should be repeated. For instance

$ echo "Hello world!" | tr '"eaiou '[@]'
H@l @w@ | d!

Produces the same output on Solaris, FreeBSD, and GNU/Linux. Another particularity is the use of the repetition
syntax in the middle of the set. Suppose that set 1 is abcdef, and set 2 @[-*]!. GNU/Linux will replace a with @,
b, ¢, d, and e with -, and f with !. FreeBSD and Solaris follow the standard thoroughly, and replace a with @, and
the rest of the set characters with -. So, a more correct notation would be the more explicit @[-*4]!, which gives the
same results on al three systems:

$ echo 'abcdef' | tr 'abcdef' '@-*4]!"
@---!

53

54 A guide to modern UNIX systems

Squeezing character sequences

When the - s parameter is used, tr will squeeze all characters that are in the second set. This means that a sequence
of the same characters will be reduced to one character. Let's squeeze the character "€":

$ echo "Let's squeeze this." | tr -s 'e'
Let's squeze this.

We can combine this with translation to show a useful example of tr in action. Suppose that we would like to mark al
vowels with the at sign (@), with consecutive vowels represented by one at sign. This can easily be done by piping
two tr commands:

$ echo "eenie neenie minie nme" | tr 'aeiou' '[@]' | tr -s '@

@@ M@ M@ M@

Deleting characters

Finally, tr can be used to delete characters. If the - d parameter is used, all characters from the first set are removed:

$ echo "Hello world!" | tr -d "Ir’
Heo wod!

Cutting and pasting text columns

The cut command is provided by UNIX systems to “cut” one or more columns from a file or stream, printing it to
the standard output. It is often useful to selectively pick some information from atext. cut provides three approaches
to cutting information from files:

1. By byte.
2. By character, whichisnot the same as cutting by byte on systemsthat use acharacter set that iswider than eight bits.
3. By field, that is delimited by a character.

In all three approaches, you can specify the element to choose by its number starting at 1. You can specify a range
by using a dash (-). So, M-N means the Mth to the Nth element. Leaving M out (-N) selects all elements from the
first element to the Nth element. Leaving N out (M-) selects the Mth element to the last element. Multiple elements
or ranges can be combined by separating them by commas (,). So, for instance, 1,3- selects the first element and the
third to the last element.

Datacan becut by fieldwiththe-f fi el ds parameter. By default, the horizontal tab is used a separator. Let's have

alook at cut in action with atiny Dutch to English dictionary:

$ cat dictionary
appel appl e

54

Chapter 5. Text processing 55

banaan banana
peer pear

We can get all English words by selecting the first field:

$ cut -f 2 dictionary
appl e

banana

pear

That was quite easy. Now let's do the same thing with afile that has a colon as the field separator. We can easily try
this by converting the dictionary with the tr command that we have seen earlier, replacing all tabs with colons:

$tr "\t' ':'" < dictionary > dictionary-new
$ cat dictionary-new

appel : appl e

banaan: banana

peer : pear

If we use the same command as in the previous example, we do not get the correct output:

$ cut -f 2 dictionary-new
appel : appl e

banaan: banana

peer: pear

What happens here is that the delimiter could not be found. If aline does not contain the delimiter that is being used,
the default behavior of cut isto print the complete line. Y ou can prevent thiswith the - s parameter.

To use a different delimiter than the horizontal tab, add the - d del i nt er _char parameter to set the delimiting
character. So, in this case of our di ct i onar y- newfile, wewill ask cut to use the colon as a delimiter:

$ cut -d':" -f 2 dictionary-new
appl e

banana

pear

If afield that was specified does not exist in aline, that particular field is not printed.

The-b bytes and-c charact ers respectively select bytes and characters from the text. On older systems a
character used to be abyte wide. But newer systems can provide character setsthat are wider than one byte. So, if you
want to be sureto grab complete characters, usethe - ¢ parameter. An entertaining example of seeing the - ¢ parameter
in action isto find the ten most common sets of the first three characters of aword. Most UNIX systems provide alist
of words that are separated by a new line. We can use cut to get the first three characters of the wordsin the word list,
add uni g to count identical three character sequences, and use sort to sort them reverse-numerically (sort isdescribed
in the section called “ Sorting text”). Finally, we will use head to get the ten most frequent sequences:

55

56 A guide to modern UNIX systems

$ cut -c 1-4 /usr/share/dict/words | uniqg -c | sort -nr | head
254 inte
206 conp
169 cons
161 cont
150 over
125 tran
111 comm
100 di sc
99 conf
96 reco

Having concluded with that nice piece of UNIX commands in action, we will move on to the paste command, which
combines filesin columns in asingle text stream.

Usage of pasteisvery simple, it will combineall files given asan argument, separated by atab. With thelist of English
and Dutch words, we can generate a tiny dictionary:

$ paste dictionary-en dictionary-nl

appl e appel
banana banaan
pear peer

Y ou can a'so combine more than two files:

$ paste dictionary-en dictionary-nl dictionary-de
appl e appel Apf el

banana banaan Banane

pear peer Bi rne

If one of the files is longer, the column order is maintained, and empty entries are used to fill up the entries of the
shorter files.

Y ou can use another delimiter by addingthe- d del i mi t er parameter. For example, we can make acolon-separated
dictionary:

$ paste -d
appl e: appel
banana: banaan
pear : peer

di ctionary-en dictionary-nl

Normally, paste combinesfiles as different columns. Y ou can also let paste use the lines of each file as columns, and
put the columns of each file on a separate line. Thisis done with the - s parameter:

$ paste -s dictionary-en dictionary-nl dictionary-de
appl e banana pear

56

Chapter 5. Text processing 57

appel banaan peer
Apf el Banane Birne

Sorting text

UNIX offersthe sort command to sort text. sort can also check whether afileisin sorted order, and merge two sorted
files. sort can sort in dictionary and numerical orders. The default sort order is the dictionary order. This means that
text lines are compared character by character, sorted as specified in the current collating sequence (which is specified
through the LC_COL L ATE environment variable). This has a catch when you are sorting numbers, for instance, if you
have the numbers 1 to 10 on different lines, the sequence will be 1, 10, 2, 3, etc. Thisis caused by the per-character
interpretation of the dictionary sort. If you want to sort lines by number, use the numerical sort.

If no additional parameters are specified, sort sortsthe input linesin dictionary order. For instance:

$ cat << ECF | sort
or ange

appl e

banana

EOF

appl e

banana

or ange

Asyou can see, theinput is correctly ordered. Sometimes there are two identical lines. Y ou can merge identical lines
by adding the - u parameter. The two samples listed below illustrate this.

$ cat << ECF | sort
or ange

appl e

banana

banana

ECF

appl e

banana

banana

or ange

$ cat << EOF | sort -u
or ange

appl e

banana

banana

ECF

appl e

banana

or ange

There are some additional parameters that can be helpful to modify the results a bit:

e The-f parameter makes the sort case-insensitive.

57

58 A guide to modern UNIX systems

« If - d isadded, only blanks and alphanumeric characters are used to determine the order.

e The-i parameter makes sort ignore non-printable characters.

You can sort files numerically by adding the - n parameter. This parameter stops reading the input line when a
non-numeric character was found. The leading minus sign, decimal point, thousands separator, radix character (that
separates an exponential from a normal number), and blanks can be used as a part of a number. These characters are
interpreted where applicable.

The following example shows numerical sort in action, by piping the output of du to sort. This works because du
specifies the size of each file asthe first field.

/ bi n/ net cat

$ du-a/bin| sort -n

0 / bi n/ ker nel ver si on
0 / bi n/ ksh

0 /bin/lsnod. nodutils
0 / bin/lspci

0 / bin/m

0

[..

In this case, the output is probably not useful if you want to read the output in a paginator, because the smallest files
arelisted first. Thisiswherethe - r parameter becomes handy. This reverses the sort order.

$ du-a/bin| sort -nr

4692 / bin

1036 / bi n/ ksh93
668 / bi n/ bash
416 / bi n/ busybox
236 /bin/tar

156 /bin/ip

[...]

The- r parameter also works with dictionary sorts.

Quite often, files use alayout with multiple columns, and you may want to sort afile by a different column than the
first column. For instance, consider the following score file named scor e. t xt :

John: US: 4
Her man: NL: 3
Kl aus: DE: 5
Hei nz: DE: 3

Suppose that we would like to sort the entriesin this file by the two-letter country name. sort allows us to sort afile
by acolumn withthe- k col 1[, col 2] parameter. Where col1 up to col2 are used as fields for sorting the input.
If col2 is not specified, al fields up till the end of the line are used. So, if you want to use just one column, use - k
col 1, col 1. You can also specify the the starting character within a column by adding a period (.) and a character
index. For instance, - k 2. 3, 4. 2 meansthat the second column starting from the third character, the third column,
and the fourth column up to (and including) the second character.

58

Chapter 5. Text processing 59

There is yet another particularity when it comes to sorting by columns: by default, sort uses a blank as the column
separator. If you use a different separator character, you will have to use the -t char parameter, that is used to
specify the field separator.

Withthe-t and - k parameters combined, we can sort the scores file by country code:

$ sort -t ':' -k 2,2 scores.txt
Hei nz: DE: 3

Kl aus: DE: 5

Her man: NL: 3

John: US: 4

So, how can we sort the file by the score? Obviously, we have to ask sort to use the third column. But sort uses a

dictionary sort by default®. Y ou could usethe- n, but sort also allows amore sophisticated approach. Y ou can append
the one or more of then, r>, f, d, i, or b to the column specifier. These letters represent the sort parameters with the
same name. |f you add just the starting column, append it to that column, otherwise, add it to the ending column.

The following command sorts the file by score:

$ sort -t ':' -k 3n /hone/daniel/scores.txt
Hei nz: DE: 3

Her man: NL: 3

John: US: 4

Kl aus: DE: 5

It is good to follow this approach, rather than using the parameter variants, because sort allows you to use more than
one - k parameter. And, adding these flags to the column specification, will allow you to sort by different columns
in different ways. For example using sort withthe-k 3, 3n -k 2, 2 parameters will sort al lines numerically
by the third column. If some lines have identical numbers in the third column, these lines can be sorted further with
adictionary sort of the second column.

If you want to check whether afileis aready sorted, you can use the - ¢ parameter. If the file was in a sorted order,
sort will return the value O, otherwise 1. We can check this by echoing the value of the ? variable, which holds the
return value of the last executed command.

$ sort -c scores.txt ; echo $?

1

$ sort scores.txt | sort -c ; echo $?
0

The second command shows that this actually works, by piping the output of the sort of scor es. t xt to sort.

Finally, you can merge two sorted files with the - mparameter, keeping the correct sort order. This is faster than
concatenating both files, and resorting them.

Tof course, that will not really matter in this case, because we don't use numbers higher than 9, and virtually all character sets have numbersin
anumerical order).

59

60 A guide to modern UNIX systems

sort -mscores-sorted.txt scores-sorted2.txt

Differences between files

Since text streams, and text files are very important in UNIX, it is often useful to show the differences between two
text files. The main utilities for working with file differences are diff and patch. diff shows the differences between
files. The output of diff can be processed by patch to apply the changes between two files to afile. “diffs’ are also
form the base of version/source management systems. The following sections describe diff and patch. To have some
material to work with, the following two C sourcefiles are used to demonstrate these commands. Thesefilesare named
hel | 0. c and hel | 02. c respectively.

#i ncl ude <stdio. h>
voi d usage(char *progranNane);

int main(int argc, char *argv[]) {
if (argc == 1) {
usage(argv[0]);
return 1,

}
printf("Hello %!\n", argv[1]);

return O;

}

voi d usage(char *progranmNane) {
printf("Usage: % nane\n", progranNane);

}

#i ncl ude <stdi o. h>
#i ncl ude <tine. h>

voi d usage(char *prograniNane);
int main(int argc, char *argv[]) {
if (argc == 1) {
usage(argv[0]);
return 1;
}
printf("Hello %!\n", argv[1]);
time_t curTime = tinme(NULL);

printf("The date is %\n", asctime(localtinme(&urTine)));

return O;

60

Chapter 5. Text processing 61

}

voi d usage(char *progranmNane) {
printf("Usage: % nane\n", progranNane);
}

Listing differences between files

Supposethat you received theprogramhel | o. ¢ fromafriend, and you modifiedit to givethe user the current dateand
time. You could just send your friend the updated program. But if afile grows larger, the can become uncomfortable,
because the changes are harder to spot. Besides that, your friend may have aso received modified program sources
from other persons. Thisisatypical situation where diff becomes handy. diff shows the differences between two files.
It most basic syntax is diff file file2, which shows the differences betweenfil e andfi | e2. Let'stry thiswith the
our sourcefiles:

$ diff hello.c hello2.c

la2 O
> #include <tine.h> 0O
12al14, 17

> time_t curTime = tinme(NULL);
> printf("The date is %\n", asctinme(localtinme(&urTinme)));
>

The additions from hel | 02. ¢ are visible in this output, but the format may look a bit strange. Actualy, these are
commandsthat can beinterpreted by the ed line editor. Wewill look at amore comfortabl e output format after touching
the surface of the default output format.

Two different elements can be distilled from this output:

O Thisisan ed command that specified that text should be appended (a) after line 2.
O Thisisthe actua text to be appended after the second line. The “>" sign is used to mark lines that are added.

The same elements are used to add the second block of text. What about lines that are removed? We can easily see
how they are represented by swapping the two parameters to diff, showing the differences between hel | 02. ¢ and
hel | 0. c:

$ diff hello2.c hello.c

2d1 O

< #include <tinme.h> O

14, 16d12

< tinme_t curTime = tinme(NULL);

< printf("The date is %\n", asctinme(localtinme(&urTinme)));
<

The following elements can be distinguished:

O Thisisthe ed delete command (d), stating that line 2 should be deleted. The second delete command uses a
range (line 14 to 17).
O Thetext that is going to be removed is preceded by the “<” sign.

61

62 A guide to modern UNIX systems

That's enough of the ed-style output. Although, it is not part of the Single UNIX Specification Version 3 standards,
almost all UNIX systemssupport so-called unified diffs. Unified diffsare very readabl e, and provide context by default.
diff can provide unified output with the - u flag:

$ diff -u hello.c hello2.c

--- hello.c 2006-11- 26 20: 28: 55. 000000000 +0100 O
+++ hello2.c 2006-11-26 21:27:52.000000000 +0100 O
@-1,4 +1,5 @O

#i nclude <stdio.h> 0O

+#i ncl ude <tine.h> O

voi d usage(char *prograniNane);
@-10,6 +11,9 @@
printf("Hello %!\n", argv[1]);

+ time_t curTine = tinme(NULL);
printf("The date is %\n", asctinme(localtinme(&urTinme)));

+

return O;

The following elements can be found in the output

O Thenameof theorigina file, and the timestamp of the last modification time.

O Thename of the changed file, and the timestamp of the last modification time.

O Thispair of numbers show the location and size of the chunk that the text below affects in the original file and
the modified file. So, in this case the numbers mean that in the affected chunk in the origina file starts at line
1, and isfour lineslong. In the modified file the affected chunk starts at line 1, and is five lines long. Different
chunksin diff output are started by this header.

O Alinethat isnot preceded by aminus (-) or plus (+) sign is unchanged. Unmodified lines are included because
they give contextual information, and to avoid that too many chunks are made. If there are only afew unmodified
lines between changes, diff will choose to make only one chunk, rather than two chunks.

O Alinethat is preceded by aplus sign (+) is an addition to the modified file, compared to the original file.

Aswith the ed-style diff format, we can see some removals by swapping the file names:

$ diff -u hello2.c hello.c

--- hello2.c 2006- 11- 26 21:27:52. 000000000 +0100
+++ hello.c 2006- 11- 26 20: 28: 55. 000000000 +0100
@-1,5 +1,4 @@

#i ncl ude <stdio. h>

-#i ncl ude <tinme. h>

voi d usage(char *prograniNane);

@-11,9 +10,6 @@

62

Chapter 5. Text processing 63

printf("Hello %!\n", argv[1]);

- time_t curTime = tinme(NULL);
- printf("The date is %\n", asctine(localtinme(&urTine)));

return O;

As you can see from this output, lines that are removed from the modified file, in contrast to the origina file are
preceded by the minus (-) sign.

When you are working on larger sets of files, it's often useful to compare whole directories. For instance, if you have
the original version of a program sourcein adirectory named hel | 0. or i g, and the modified version in adirectory
named hel | o, you can usethe- r parameter to recursively compare both directories. For instance:

$ diff -ru hello.orig hello
diff -ru hello.orig/hello.c hello/hello.c

--- hello.orig/hello.c 2006-12-04 17:37:14.000000000 +0100
+++ hell o/ hello.c 2006- 12-04 17: 37:48. 000000000 +0100
@-1,4 +1,5 @@

#i ncl ude <stdi o. h>

+#i ncl ude <ti nme. h>

voi d usage(char *prograniNane);
@-10,6 +11,9 @@
printf("Hello %!\n", argv[1]);

+ time_t curTime = tinme(NULL);
printf("The date is %\n", asctime(localtinme(&urTine)));

+

return O;

It should be noted that thiswill only compare filesthat are available in both directories. The GNU version of diff, that
isused by FreeBSD and GNU/Linux provides the - N parameter. This parameters treats files that exist in only one of
both directories asiif it were an empty file. So for instance, if we have added afile named Makef i | e tothehel | o
directory, using the - N parameter will give the following output:

$ diff -ruN hello.orig hello

diff -ruN hello.orig/hello.c hello/hello.c

--- hello.orig/hello.c 2006-12-04 17:37:14.000000000 +0100
+++ hell o/ hello.c 2006-12-04 17:37:48. 000000000 +0100
@-1,4 +1,5 @@

63

64 A guide to modern UNIX systems

#i ncl ude <stdi o. h>
+#i ncl ude <tine. h>

voi d usage(char *progranNane);
@-10,6 +11,9 @@
printf("Hello %!\n", argv[1]);

+ time_t curTime = time(NULL);
printf("The date is %\n", asctime(localtinme(&urTine)));

+

return O;

}

diff -ruN hello.orig/ Makefile hell o/ Makefile

--- hello.orig/Makefile 1970-01-01 01: 00: 00. 000000000 +0100
+++ hel | o/ Makefil e 2006-12-04 17:39:44. 000000000 +0100
@-0,0 +1,2 @@

+hello: hello.c

+ gcc -Vall -0 $@$<

Asyou can see the chunk indicator says that the chunk in the original file starts at line 0, and is O lines long.

UNIX users often exchange the output of diff, usually called “diffs’ or “patches’. The next section will show you
how you can handle diffs. But you are now able to create them yourself, by redirecting the output of diff to afile.
For example:

$ diff -u hello.c hello2.c > hello_add date.diff
If you have multiple diffs, you can easily combine them to one diff, by concatenating the diffs:
$ cat diffl diff2 diff3 > conbined_diff

But make sure that they were created from the same directory if you want to use the patch utility that is covered in
the next section.

Modifying files with diff output

Suppose that somebody would send you the output of diff for a file that you have created. It would be tedious to
manually incorporate all the changes that were made. Fortunately, the patch can do this for you. patch accepts diffs
on the standard input, and will try to change the origina file, according to the differences that are registered in the
diff. So, for instance, if we havethe hel | 0. c¢ file, and the patch that we produced previously based on the changes
betweenhel | 0. ¢ and hel | 02. ¢, wecan patch hel | 0. ¢ to become equal to its counterpart;

$ patch < hello_add _date. diff
patching file hello.c

64

Chapter 5. Text processing 65

If you have hel | 02. ¢, you can check whether the files are identical now:

$ diff -u hello.c hello2.c

There is no output, so thisis the case. One of the nice features of patch isthat it can revert the changes made through
adiff, by using the - R parameter:

$ patch -R < hello_add _date. diff

In these examples, the original file is patched. Sometimes you may want to want to apply the patch to afile with a
different name. Y ou can do this by providing the name of afile asthe last argument:

$ patch helloworld.c < hello_add_date. diff
patching file helloworld.c

You can aso use patch with diffs that were generated with the - r parameter, but you have to take a bit of care.
Suppose that the header of aparticular file in the diff is asfollows:

diff -ruN hello.orig/hello.c hello/hello.c
|--- hello.orig/hello.c 2006-12-04 17:37:14.000000000 +0100
[+++ hello/hello.c 2006-12-04 17:37:48.000000000 +0100

If you process this diff with patch, it will attempt to change hel | 0. c. So, the directory that holds thisfile hasto be
the active directory. Y ou can use the full pathname with the- p n, where n is the number of pathname components
that should be stripped. A value of 0 will use the path asiit is specified in the patch, 1 will strip the first pathname
component, etc. In this example, stripping the first component will result in patching of hel | 0. c. According to the
Single UNIX Specification version 3 standard, the path that is preceded by --- should be used to construct the file that
should be patched. The GNU version of patch does not follow the standard here. So, it is best to strip off to the point
where both directory names are equal (thisisusually the top directory of the tree being changed). In most cases where
relative paths are used this can be done by using -p 1. For instance:

$ cd hello.orig
$ patch -p 1 < ../hello.diff

Or, you can use the - d parameter to specify in which directory the change has to be applied:

$ patch -p 1 -d hello.orig < hello.diff
patching file hello.c
patching file Makefile

If you want to keep a backup when you are changing afile, you can use the - b parameter of patch. Thiswill make a
copy of every affected filenamed f i | enane. ori g, before actually changing the file:

65

66 A guide to modern UNIX systems

$ patch -b < hello_add date. diff

$1s -1 hello.c*

-rwr--r-- 1 daniel daniel 382 2006-12-04 21:41 hello.c
-rwr--r-- 1 daniel daniel 272 2006-12-04 21:12 hello.c.orig

Sometimes afile can not be patched. For instance, if it has already been patched, it has changed to much to apply the
patch cleanly, or if the file does not exist at all. In this case, the chunksthat could not be saved are stored in afile with
thenamef i | enamne. r ej , where filenameis the file that patch tried to modify.

5.2. Regular expressions

Introduction

In daily life, you will often want to some text that matches to a certain pattern, rather than a literal string. Many
UNIX utilitiesimplement alanguage for matching text patterns, regular expressions (regexps). Over time the regular
expression language has grown, there are now basically three regular expression syntaxes:

 Traditional UNIX regular expressions.

» POSIX extended regular expressions.

* Perl-compatible regular expressions (PCRE).

POSIX regexps are mostly a superset of traditional UNIX regexps, and PCRESs a superset of POSIX regexps. The
syntax that an application supports differs per application, but aimost al applications support at least POSIX regexps.

Each syntactical unit in aregexp expresses one of the following things:

» A character: this is the basis of every regular expression, a character or a set of characters to be matched. For
instance, the letter p or the the sign ,.

Quantification: a quantifier specifies how many times the preceding character or set of characters should be
matched.

Alternation: aternation is used to match “aor b” in which a and b can be a character or aregexp.

» Grouping: thisis used to group subexpressions, so that quantification or alternation can be applied to the group.

Traditional UNIX regexps

This section describes traditional UNIX regexps. Because of alack of standardisation, the exact syntax may differ a
bit per utility. Usually, the manual page of a command provides more detailed information about the supported basic
or traditional regular expressions. It is a good idea to learn traditional regexps, but to use POSIX regexps for your
OWnN scripts.

Matching characters

Characters are matched by themselves. If a specific character is used as a syntactic character for regexps, you can
match that character by adding a backslash. For instance, \+ matches the plus character.

A period (.) matches any character, for instance, the regexp b.g matches bag, big, and blg, but not bit.

66

Chapter 5. Text processing 67

The period character, often provides too much freedom. Y ou can use square brackets ([]) to specify characters which
can be matched. For instance, the regexp b[aei]g matches bag, beg, and big, but nothing else. Y ou can also match
any character but the charactersin a set by using the square brackets, and using the caret (*) asthe first character. For
instance, b["aei]g matches any three character string that starts with b and ends with g, with the exception of bag,
beg, and big. It isalso possible to match arange of characters with adash (-). For example, a[0-9] matches afollowed
by a single number character.

Two special characters, the caret (*) and the dollar sign ($), respectively match the start and end of aline. Thisisvery
handy for parsing files. For instance, you can match al lines that start with a hash (#) with the regexp .

Quantification

The simplest quantification sign that traditional regular expressions support isthe (Kleene) star (*). This matches zero
or arbitrary instances of the preceding character. For instance, ba* matches b, babaa, etc. Y ou should be aware that
a single character folowed by a star without any context matches every string, because c* aso matches a string that
has zero c characters.

M ore specific repetitions can be specified with backslash-escaped curly braces. \{x,y\} matchesthe preceding character
at least x times, but not more than y times. So, ba\{ 1,3\} matches ba, baa, and baaa.

Grouping

Backslash-escaped parentheses group various characters together, so that you can apply quantification or alternation
to agroup of characters. For instance, \(ab\)\{ 1,3\} matches ab, abab, and ababab.

Alternation

A backslash-escaped pipe vertical bar (\|) allows you to match either of two expressions. Thisis not useful for single
characters, because a\|b is equivalent to [ab], but it is very useful in conjunction with grouping. Suppose that you
would like an expression that matches apple and pear, but nothing else. This can be done easily with the vertical bar:

(apple)|(pear).

POSIX extended regular expressions

POSIX regular expressions build upon traditional regular expressions, adding some other useful primitives. Another
comforting difference is that grouping parenthesises, quantification accolades, and the alternation sign (|) are not
backslash-escaped. If they are escaped, they will match the literal characters instead, thus resulting in the opposite
behavior of traditional regular expressions. Most people find POSIX extended regular expressions much more
comfortable, making them more widely used.

Matching characters

Normal character matching has not changed compared to the traditional regular expressions described in the section
called “Matching characters’

Quantification

Besidesthe Kleene star (*), that matchesthe preceding character or group zero or moretimes, POSI X extended regular
expressions add two new simple quantification primitives. The plus sign (+) matches the preceding character or group
one or more times. For example, a+, matches a (or any string with more consecutive a's), but does not match zero
a's. The questions mark character (?) matches the preceding character zero or one time. So, ba?d matches bd and bad,
but not baad or bed.

67

68 A guide to modern UNIX systems

Curly braces are used for repetition, like traditional regular expressions. Though the backslash should be omitted. To
match ba and baa, one should use ba{1,2} rather than ba\{1,2\}.

Grouping

Grouping is done in the same manner as traditional regular expressions, leaving out the escape-backsl ashes before the
parenthesises. For example, (ab){1,3} matches ab, abab, and ababab.

Alternation

Alternation is done in the same manner as with traditional regular expressions, leaving out the escape-backslashes
before the vertical bar. So, (apple)|(pear) matches apple and pear.

5.3. grep

Basic grep usage

We have now arrived at one of the most important utilties of the UNIX System, and the first occasion to try and
use regular expressions. The grep command is used to search a text stream or afile for a pattern. This patternis a
regular expression, and can either be abasic regular expression or aPOSIX extended regular expression (whenthe- E
parameter is used). By default, grep will write the lines that were matched to the standard output. In the most basic
syntax, you can specify aregular expression as an argument, and grep will search matchesin thetext from the standard
input. Thisis anice manner to practice a bit with regular expressions.

$ grep "M (ab\)\{2,3\}%
ab

abab

abab

ababab

ababab

abababab

The example listed above shows a basic regular expression in action, that matches a line soléely consisting of two or
three times the ab string. Y ou can do the same thing with POSIX extended regular expressions, by adding the - E
(for extended) parameter:

$ grep -E "~(ab){2,3}$
ab

abab

abab

ababab

ababab

abababab

Since the default behavior of grep isto read from the standard input, you can add it to a pipeline to get the interesting
parts of the output of the preceding commands in the pipeline. For instance, if you would like to search for the string
2006 in the third column in afile, you could combine the cut and grep command:

68

Chapter 5. Text processing 69

$ cut -f 3| grep '2006

grepping files

Naturally, grep can also directly read afile, rather than the standard input. As usual, this is done by adding the files
to be read as the last arguments. The following example will print al lines from the / et ¢/ passwd file that start
with the string daniel:.

$ grep "~daniel" /etc/passwd
dani el : *: 1001: 1001: Dani el de Kok:/hone/ dani el :/bin/sh

A non-standard extension to grep on FreeBSD and GNU/Linux also provides a parameter to recursively traverse a
directory structure, trying to find matches in each file that was encountered during the traversal. This parameter, - r
often proves to be very handy. Though, it is better to combine find with the -exec operand in scripts that have to be
portable.

$ grep -r 'sonepattern’ sonedir

is the non-portable functional equivalent of

$ find /somedir -type f -exec grep 'sonepattern' {} \; -print

Pattern behavior

grep can aso print al linesthat do not match the pattern that was used. Thisis done by adding the - v parameter:

$ grep -Ev '~(ab){2,3}%
ab

ab

abab

ababab

abababab

abababab

If you want to use the pattern in a case-insensitive manner, you can add the - i parameter. For example:

Y ou can also match a string literally with the - F parameter:

69

70 A guide to modern UNIX systems

$ grep -F "aa*’
a

aa*

aa*

Using multiple patterns

As we have seen, you can use the aternation character (|) to match either of two or more subpatterns. If two patterns
that you would like to match differ alot, it is often more comfortable to make two separate patterns. grep alowsyou
to use more than one pattern by separating patterns with a newline character. So, for example, if you would like to
print lines that match either the a or b pattern, this can be done easily by starting a new line:

grep 'a

O T O T &

Thisworks, because quotes are used, and the shell passes quoted parameters literally. Though, it must be admitted that
thisis not quite pretty. grep accepts one or more - e pat t er n parameters, giving the opportunity to specify more
than one parameter on one line. The grep invocation in the previous example could be rewritten as:

$ grep -e 'a’ -e'b

70

Chapter 6. Process management
6.1. Theory

Processes

A running instance of a program is called a process. Each process has its own protected memory, named the process
address space. This address space consists of two areas. the text area and the data area. The text area contains the
actual program code, and tellsthe system what to do. The data area stores constant and runtime data of aprocess. Since
there are many processes on a system, and only one or afew processors, the operating system kernel divides processor
time between processes. This processis called time-sharing.

Table6.1. Thestructure of a process

Field Description

pid The numeric process identifier

ppid The processidentifier of the parent
process

euid The effective user ID of the
process.

ruid Thereal user ID of the process

egid The group ID of the process

rgid Thereal group ID of the process

fd Pointer to the list of open file
descriptors

vmspace Pointer to the process address
space.

Table6.1, “ Thestructure of aprocess’ liststhe most important fields of information that akernel stores about aprocess.
Each process can be identified uniquely by its PID (process identifier), which is an unsigned number. Aswe will see
later, a user can easily retrieve the PID of a process. Each process is associated with a UID (user ID) and GID (group
ID) on the system. Each process has areal UID, which isthe UID as which the process was started, and the effective
UID, which isthe UID as which the process operates. Normally, the effective UID is equal to the real UID, but some
programs ask the system to change its effective UID. The effective UID determines is used for access control. This
means that if a user named joe starts a command, say less, less can only open files that joe has read rights for. In
parallel, aprocess also hasan real GID and an effective GID.

Many processes open files, the handle used to operate on afile is called a file descriptor. The kernel manages alist
of open file descriptors for each process. The fd field contains a pointer to the list of open files. The vmspace field
points to the process address space of the process.

71

72 A guide to modern UNIX systems

Figure 6.1. Process states

Blocked

Not every processisin need of CPU time at agiven moment. For instance, some processes maybe waiting for some l/O
(Input/Output) operation to complete or may be terminated. Not taking subtleties in account, processes are normally
started, running, ready (to run), blocked (waiting for 1/0), or terminated. Figure 6.1, “Process states’ shows the
lifecycle of a process. A process that is terminated, but for which the process table entry is not reclaimed, is often
called a zombie process. Zombie processes are useful to let the parent process read the exit status of the process, or
reserve the process table entry temporarily.

Creating new processes

New processes are created with the fork() system call. This system call copies the process address space and process
information of the caller, and gives the new process, named the child process, a different PID. The child process will
continue execution at the same point as the parent, but will get a different return value from the fork() system call.
Based on this return value the code of the parent and child can decide how to continue executing. The following piece
of C code shows afork() call in action:

#i ncl ude <sys/types. h>
#i ncl ude <stdi o. h>
#i ncl ude <uni std. h>

int main() {
pidt pid = fork();

if (pid == 0)

printf("H , |I amthe child!\n");
el se

printf("H , | amthe parent, the child PIDis %!\n", pid);
return O;

72

Chapter 6. Process management 73

. Thisllittle program calls fork(), storing the return value of fork() in the variable pid. fork() returns the value 0 to the
child, and the PID of the child to the parent. Since thisis the case, we can use a simple conditional structure to check
the value of the pid variable, and print an appropriate message.

Y ou may wonder how it is possible to start new programs, since the fork() call duplicates an existing process. That isa
good questions, since with fork() alone, it is not possible to execute new programs. UNIX kernels also provide a set of
system calls, starting with exec, that load anew program imagein the current process. We saw at the start of thischapter
that a processisarunning program -- a process was constructed in memory from the program image that is stored on
astorage medium. So, the exec family of system calls gives arunning process the facilities to replace its contents with
aprogram stored on some medium. In itself, thisis not wildly useful, because every time the an exec call is done, the
original calling code (or program) is removed from the process. This can be witnessed in the following C program:

#i ncl ude <stdi o. h>
#i ncl ude <uni std. h>

int main() {
execve("/bin/ls", NULL, NULL);

/* This will never be printed, unless execve() fails. */
printf("Hello world!\n");

return O;

}

This program executes Is with the execve() call. The message printed with printf() will never be shown, because the
running program image is replaced with that of |s. Though, a combination of fork() and the exec functions are very
powerful. A process can fork itself, and let the child “sacrifice” itself to run another program. The following program
demonstrates this pattern:

#i ncl ude <sys/types. h>
#i ncl ude <stdio. h>
#i ncl ude <uni std. h>

int main() {
pid_t pid = fork();
if (pid == 0)
execve("/bin/ls", NULL, NULL);

printf("Hello world!");

return O;

}

Thisprogram forksitself first. The program image of the child processwill bereplaced with Is, while the parent process
prints the “Hello world!” message to the screen and returns.

Thisprocedureisfollowed by many programs, including the shell, when acommand is executed from the shell prompt.
In fact al processes on a UNIX system are directly or indirectly derrived from the init process, which is the first
program that is started on a UNIX system.

73

74 A guide to modern UNIX systems

Threads

Although forks are very useful to build some paraJIeIisml, they can be to expensive for some purposes. Copying the
whole process takes some time, and there is cost involved if processes want to share data. Thisis solved by offering a
more lightweight alternative, namely allowing more than onethread of execution. Each thread of execution isexecuted
separately, but the process data is shared between the threads.

Writing good multithreaded programs requires good knowledge of data sharing and locking. Since all data is shared,
uncareful programming can lead to bugs like race conditions.

6.2. Analyzing running processes

Listing running processes

UNIX systemsprovidethe pscommand to show alist of running processes. Unfortunately, thiscommand isan example
of the pains of the lack of standardization. The BSD and System V variants of ps have their own sets of options.
GNU/Linux implements both the System V and BSD-style parameters, as well as some (GNU-style) long options. Of
the systems covered in this book, FreeBSD uses BSD-style options, Solaris SysV options, and on GNU/Linux options
preceded by a dash are interpreted as System V options and options without a dash as GNU options.

Fortunately, the designersof the Single UNIX Specification have attempted to standardizethe ps options. Thewritersof
the standard attempted to make the standard conflict with existing optionsaslittle aspossible. This section will describe
ps according to the SUSv3 standard, while also describing exceptions to the standard. This section will describe ps
according to the standard, noting exceptions where they apply.

If psisused without any parameters, it shows all processes owned by the user that invokes ps and that are attached
to the same controlling terminal. For example:

$ ps
PID TTY TI ME CMVD
8844 pts/5 00: 00: 00 bash
8862 pts/5 00: 00: 00 ps

A lot of useful information can be distilled from this output. Asyou can see, two processes are listed: the shell that we
used to call ps(bash), and the ps command itself. In this case there are four information fields. PID isthe process ID of
aprocess, TTY the controlling terminal, TIME the amount of CPU time the proces has used, and CM D the command
or program of which a copy is running. The fields that are shown by default may vary a bit per system, but usually at
least these fields are shown, with somewhat varying field labels.

Sometimeyou may want to have abroader view of processesthat arerunning. Adding the- a option showsall processes
that are associated with terminals. For instance:

$ ps -a
PID TTY TI ME CVD
7487 pts/1 00: 00: 00 | ess
8556 pts/4 00: 00: 10 emacs- X
11324 pts/3 00: 00: 00 ps

LFor instance, aweb server could fork multi ple child processes to handle requests

74

Chapter 6. Process management 75

As you can see, processes with different controlling terminals are shown. Though, in contrast to the plain ps output,
only processes that control the terminal at the moment are shown. For instance, the shell that was used to call psis
not shown.

You can also print all processes that are running, including processes that are not associated with aterminal, by using
the - A option;

$ ps -A| head -n 10

PID TTY TI ME CVD
00: 00: 01 init
00: 00: 00 migration/0
00: 00: 00 ksoftirqgd/ 0
00: 00: 00 wat chdog/ 0
00: 00: 00 m gration/1
00: 00: 00 ksoftirqd/ 1
00: 00: 00 wat chdog/ 1
00: 00: 00 events/O
00: 00: 00 events/1

O©CoOoO~NOOOUOTPA,WNPE
ACEESEEIC BRIV EES BES BES BRI BEN |

You can print all processes with acertain user ID, with the -U option. This option accepts a user name as a parameter,
or multiple user names that are separated by a comma. The following command shows all processes that have xfs or
rpc astheir user 1D:

$ ps -U xfs,rpc

PID TTY TI ME CVD
2409 ? 00: 00: 00 port map
2784 ? 00: 00: 00 xfs

Likewise, you can also print processes with a particular group 1D, with the -G option:

$ ps - G nessagebus, hal daenon

PID TTY TI ME CVD
8233 ? 00: 00: 00 dbus-daenon
11312 2 00: 00: 00 hal d
11320 ? 00: 00: 00 hal d- addon- keyb
11323 ? 00: 00: 00 hal d- addon- acp

If you would like to have alist for aphysical or pseudo-terminal, you can use the-t option:

$ ps -t tty2
PID TTY TI ME CMD
2655 tty2 00: 00: 00 getty

75

76 A guide to modern UNIX systems

6.3. Managing processes

Sending singals to a process

Signals are a crude, but effective form of inter-process communication (IPC). A signal is basically a number that is
delivered to aprocess that has a special meaning. For all signalsthere are default signal handlers. Processes can install
their own signal handlers, or choose to ignore signals. Some signals (normally SIGKILL and SIGSTOP) can not be
ignored. All signals have convenient symbolic names.

Only afew signals are normally interesting for interactive use on UNIX(-like) systems. These are (followed by their
number):

* SGKILL (9): forcefully kill aprocess.

» SGTERM (15): request a process to terminate. Since this is a request, a program could ignore it, in contrast to
SGKILL.

* SGHUP (1): Traditionaly, this has signalled atermina hangup. But nowadays some daemons (e.g. inetd) reread
their configuration when this signal is sent.

Thekill command isused to send asignal to aprocess. By default, kill sendsthe SGTERM signal. To send thissignal,
the process ID of the process that you would like to send this signal to should be added as a parameter. For instance:

$ kill 15631

To send another signal, you can use one of two options: -signalnumber or -signalname. So, the following commands
both send the SIGKILL signal to the process with process ID 15631:

$ kill -9 15631

$ kill -SIGKILL 15631

Being nice to others

In an act of altruism you can be nice to other users of computer resources. If you plan to run a CPU-time intensive
process, but do not want that to interfere with work of other users on the system (or other processes), you can assign
some grade of 'niceness to a process. Practically, this means that you will be able to influence the scheduling priority
of aprocess. Nicer processes get alower scheduling priority. The normal niceness of aprocessis0, and can be changed
by executing a program with the nice command. The -n [niceness] option can be used to specify the niceness:

$ nice -n 20 cputi newast er

The maximum number for nicenessis implementation-dependent. If a program was started with nice, but no niceness
was specified, the niceness will be set to 10. In case you were wondering: yes, you can also be rude, but thisright is
restricted to the root user. Y ou can boost the priority of a process by specifying a negative value as the niceness.

76

Chapter 6. Process management 77

You can also modify the niceness of a running processes with the renice command. This can be done for specific
process IDs (- p Pl Ds), users (- u user/ ui d), and effective groups (- g gr oup/ gi d). The - n option is used
specify how much the niceness should be increased.

These are some exampl es that respectively increase the niceness of some PIDs, users, and groups:

$ renice -n 10 -p 3108 4022
$ renice -n 10 -u daniel
$ renice -n 10 -g nysql

The niceness of a process can only be increased. And, of course, no user except for root can affect the niceness of
processes of other users.

GNU/Linux systems do not follow the standard here, and do not accept the -n option to renice. Instead its renice
command expects the absol ute niceness (not an incremental step up) asthe first option. For instance, to set the niceness
of aprocess with PID 3108 to 14, you could use the following command:

$ renice 14 -p 3108

FreeBSD also accepts this syntax of renice. With this syntax, no one but the root user can set the niceness of a process
lower than the current niceness.

6.4. Job control

It is often useful to group processes to allow operations on a set of processes, for instance to distribute a signal to
all processes in a group rather than a single process. Not too suprisingly, these sets of processes are called program
groupsin UNIX. After afork, achild processis automatically a member of the process group of the parent. Though,
new process groups can be created by making one process a process group leader, and adding other processes to the
group. The process group ID isthe PID of the process group leader.

Virtually al modern UNIX shells give processes that are created through the invocation of a command their own
process group. All processes in a pipeline are normally added to one process group. If the following commands that
create a pipepine are executed

cat | tr -s ' ' | egrep 'foob.r'

the shell roughly performs the following steps:
1. Three child processes are forked.

2. Thefirst processin the pipeline is put in a process group with its own PID as the process group 1D, making it the
process leader. The other processes in the pipeline are added to the process group.

3. Thefile descriptors of the processes in the pipeline are reconfigured to form a pipeline.
4. The programsin the pipeline are executed.

The shell uses process groups to implement job control. A shell can run multiple jobs in the background, there can be
multiple stopped job, and one job can be in the foreground. A foreground job iswired to the terminal for its standard
input (meaning that it is the job the gets user input).

7

78 A guide to modern UNIX systems

Stopping and continuing a job

A job that is in the foreground (thus, a job that potentially accepts userinput from the terminal) can be stopped by
pressing Ctrl-z (pressing both the 'Ctrl' and 'z keys simultaneously). This will stop the job, and will handle control
over the terminal back to the shell. Let's try this with the sleep command, which waits for the number of seconds
provided as an argument:

$ sleep 3600
Grl-z
[1]+ Stopped sl eep 3600

The process group, which we will refer to as ajob has been stopped now, meaning the the sleep has stopped counting
- it's execution is completely stopped. Y ou can retrieve alist of jobs with the jobs command:

$ jobs
[1]+ Stopped sl eep 3600

This shows the job number (1), its state, and the command that was used to start this job. Let's run another program,
stop that too, and have another look at the job listing.

$ cat

Grl-z

[2]+ Stopped cat

$ jobs

[1]- Stopped sl eep 3600
[2]+ Stopped cat

As expected, the second job is also stopped, and was assigned job number 2. The plus sign (+) following the first job
has changed to a minus (-) sign, while the second job is now marked by a plus sign. The plus sign is used to indicate
the current job. The bg and fg commands that we will look at shortly, will operate on the current job if no job was
specified as a parameter.

Usually, when you are working with jobs, you will want to move jobs to the foreground again. This is done with the
fg command. Executing fg without a parameter will put the current job in the foreground. Most shells will print the
command that is moved to the foreground to give an indication of what process was moved to the foreground:

$ fg
cat

Of course, it's not always useful to put the current job in the foreground. Y ou can put another job in the foreground by
adding the job humber preceded by the percentage sign (%) as an argument to fg:

$fg wWd
sl eep 3600

78

Chapter 6. Process management 79

Switching jobs my stopping them and putting them in the foreground is often very useful when the shell is used
interactively. For example, suppose that you are editing afile with atext editor, and would like to execute some other
command and then continue editing. You could stop the editor with Ctrl-z, execute a command, and put the editor
in the foreground again with fg.

Background jobs

Besides running in the foreground, jobs can also run in the background. This means that they are running, but input
from theterminal is not redirected to background processes. Most shells do configure background jobs to direct output
to the terminal of the shell where they were started.

A process that is stopped can be continued in the background with the bg command:

$ sl eep 3600
[1]+ Stopped sl eep 3600
$ bg

[1] + sl eep 3600 &
$

Y ou can see that the job is indeed running with jobs:

$ jobs
[1]+ Running sl eep 3600 &

Like fg, you can also move another job than the current job to the background by specifying its job number:

$ bg W
[1] + sl eep 3600 &

You can also run put ajob directly in the background when it is started, by adding an trailing ampersand (&) to a
command or pipeline. For instance:

$ sleep 3600 &
[1] 5078

79

80

80

Bibliography

Books

[SUSV3] Copyright © 2001-2004 The IEEE and The Open Group. The Open Group Base Specifications Issue 6,
|EEE Sd 1003.1, 2004 Edition .

81

82

82

	A guide to modern UNIX systems
	Table of Contents
	Preface
	Chapter 1. Introduction
	1.1. A short history of UNIX
	1.2. The current state of UNIX
	1.3. UNIX philosophy
	1.4. Free and Open Source software

	Chapter 2. A whirlwind tour through UNIX
	2.1. Logging in
	2.2. Finding your way around
	2.3. Working with files
	2.4. Organizing files
	2.5. Getting help
	2.6. Logging out

	Chapter 3. The shell
	3.1. Introduction
	3.2. Executing commands
	3.3. Moving around
	Character editing
	Word editing
	Line editing

	3.4. Command history
	3.5. Completion
	3.6. Aliases
	3.7. Executing shell commands upon shell invocation

	Chapter 4. Filesystem
	4.1. Some theory
	inodes, directories and data
	File permissions
	Links

	4.2. Analyzing files
	Listing files
	Determining the type of a file
	File integrity
	Viewing files
	File and directory sizes

	4.3. Working with directories
	Listing directories
	Creating and removing directories

	4.4. Managing files and directories
	Copying
	Moving files and directories
	Removing files and directories

	4.5. Permissions
	Changing the file ownership
	Changing the file permission bits
	File creation mask
	Access Control Lists
	Reading access control lists
	Creating access control lists
	Modifying ACL entries
	Removing ACL entries
	Making a new ACL
	Setting a default ACL
	Using an ACL from a reference file

	4.6. Finding files
	find
	Operands that limit by object name or type
	Operands that limit by object ownership or permissions
	Operands that limit by object creation time
	Operands that affect tree traversal
	Operands that execute external utilities
	Operators for building complex expressions

	which
	whereis
	locate

	4.7. Compression and archiving
	File compression
	compress

	Chapter 5. Text processing
	5.1. Simple text manipulation
	Repeating what is said
	Text statistics
	Manipulating characters
	Swapping characters
	Squeezing character sequences
	Deleting characters

	Cutting and pasting text columns
	Sorting text
	Differences between files
	Listing differences between files
	Modifying files with diff output

	5.2. Regular expressions
	Introduction
	Traditional UNIX regexps
	Matching characters
	Quantification
	Grouping
	Alternation

	POSIX extended regular expressions
	Matching characters
	Quantification
	Grouping
	Alternation

	5.3. grep
	Basic grep usage
	grepping files
	Pattern behavior
	Using multiple patterns

	Chapter 6. Process management
	6.1. Theory
	Processes
	Creating new processes
	Threads

	6.2. Analyzing running processes
	Listing running processes

	6.3. Managing processes
	Sending singals to a process
	Being nice to others

	6.4. Job control
	Stopping and continuing a job
	Background jobs

	Bibliography

